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INTRODUCTION 

Background 

Constructing embankments and infrastructure on soft foundation soils can have 

problematic and costly effects during both the construction phase and thereafter, e.g. total 

and differential settlement, insufficient bearing capacity and slope failures. Despite the fact 

that engineers have been familiar with the problems inherent in building on soft soils for 

many years, improvement techniques remain costly and limited (Hughes and Withers, 1974). 

Alternatives to traditional improvement techniques such as deep foundations, preloading 

(preconsolidation) methods and overexcavation and replacement methods are continually 

sought after in hopes of gaining more options when encountering soft soils. 

As an alternative to long-established soil improvement techniques rammed aggregate 

piers (GeopierTM foundation elements) have been installed within and around the Ramp "c" 

abutment footprint for the 1-35 overpass at the Hwy 5/1-35 interchange in Des Moines, IA. 

The rammed aggregate piers were installed in an effort to reduce total settlement and increase 

the rate ofconsolidation settlement in the soft alluvial clay. The prinmry goal of the pier 

installation was to reduce the construction delay between embankment and abutment 

construction. The area of the abutment is a staged earthwork construction. The initial four to 

five meters of fill was placed in July 2000 and the final four to five meters of fill will be 

placed during spring or summer 2001. At the adjacent Ramp "B" bridge abutment stone' 

columns were installed in the foundation soils to increase slope stability at the interface 

between the silty alluvium and weathered shale. Seven to eight meters of fill was placed 

during July 2000 and abutment construction has begun. Although the main focus of this 

investigation is to evaluate embankment foundation reinforcement using rammed aggregate 
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piers, the stone column reinforced soil was investigated for a comparative analysis to the 

rammed aggregate pier reinforced soil. 

Objectives/Scope of Study 

The primary objective ofthis research is to investigate embankment foundation 

reinforcement using rammed aggregate piers in Iowa soils. Stone columns were also 

investigated in a similar application and compared to rammed aggregate piers. The IA Hwy 

5/I-35 overpass project site was the primary research site for this investigation. 

In-situ testing including piezocone penetrometer (CPTU), pressuremeter (PMT), Ko­

stepped blade and borehole shear (BST) tests as well as extensive laboratory testing have 

been conducted to investigate rammed aggregate piers' and stone columns' effects on lateral 

stress, settlement, stress concentrations and rate of consolidation settlement. Comparative 

stiffuess and densities of rammed aggregate piers and stone columns were also evaluated 

based on full-scale load tests and standard penetration (SPT) tests. Vibrating wire 

instrumentation including settlement cells and total pressure cells were installed for 

continuous and long-term (5 year) monitoring of the piers, columns and embankments. 

Settlement plates were installed and monitored by conventional survey methods. 

Rammed aggregate piers encompass a relatively simple concept, nevertheless, recent 

case histories have shown that some structures constructed on aggregate pier reinforced soils 

have performed considerably better than predicted (Lawton and Fox, 1994; Lawton et aI., 

1994; Handy et aI., 1999). The use of rammed aggregate piers has increased since their 

introduction in 1988, yet their behavior under load is not thoroughly understood. Research 

on rammed aggregate piers is necessary to better understand the complex pier-soil matrix 
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interaction under load. A better understanding ofthe load transfer mechanism of the piers 

and the pier-soil matrix interaction is hoped to be gained through the investigation described 

herein. 
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REVIEW OF LITERATURE 

Review of Construction Processes 

Rammed aggregate piers may appear.similar to stone columns in many ways, but the 

characteristics unique to the rammed aggregate pier foundation system have resulted in an 

award of a U.S. patent, with international patents pending (Fox and Lawton, 1993). These 

unique characteristics are summarized as follows: 

1. The piers are designed primarily to stiffen the subgrade soil. Strengthening of the 

subgrade soil and increased drainage are secondary considerations. 

2. Aggregate piers are short, typically only two to three times as tall as they are wide. The 

piers are not typically extended to stronger, deeper soil zones. 

3. Construction of aggregate piers involves the formation ofa cavity by removal of matrix 

soil, rather than by lateral or vertical soil displacement. To a large extent the soil's 

natural cementation and fabric are preserved. 

4. Aggregate piers are constructed using impact densification methods with relatively high 

impact frequency, rather than vibratory methods. 

5. Aggregate piers are densified in thin lifts, prestraining, prestressing, and densifYing 

adjacent matrix soils and producing very dense and very stiff foundation elements, 

thereby reducing vertical displacements upon application of structural loads (Lawton and 

Fox, 1994). 

Rammed aggregate pier construction process 

The major steps in the construction process of a rammed aggregate pier within a soil 

matrix are illustrated in Figure 1 and are summarized as follows: 
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1. A cylindrical or rectangularly prismatic cavity is formed in the soil by using either an 

auger or a backhoe. 

2. The soils at the bottom of the cavity are densified and prestressed by repeated impact 

from a specially designed tamper with a beveled head. 

3. Typically well-graded aggregate (normally highway base course stone) is placed loosely 

at the bottom of the cavity in a thin lift. 

4. The aggregate is highly densified by repeated ramming from the tamper, which also 

prestresses the soil laterally. 

5. Compacted lifts are added until the desired height is achieved (Lawton and Fox, 1994). 

Reportedly, the result is a composite reinforced aggregate pier-soil matrix of 

improved modulus, stiffuess, and capacity to control settlement (Lawton and Fox, 1994). 

Figure 2 shows a photograph of an auger removing saturated clay from the cavity (step 1). 

Figure 3 shows a photograph of aggregate being placed into the cavity and the beveled 

tamper is also shown (step 3). 

Stone column construction process 

The major steps in the construction process of a stone column within a soil matrix are 

illustrated in Figure 4 and are described as follows: 

1. A cylindrical cavity is formed by inserting a long (10 m) thin (0.5 m diameter) vibrating 

tube into the soil. The vibrating tube is suspended from a crane and is known as a 

vihroflot. 

2. Air or water at high pressure is forced out of the bottom of the tube. This combination of 

vibration and jetting forms the cavity in a matter of minutes. No excavation is necessary 

as the cavity is formed by soil displacement. 
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(a> (b) 

(c) (d) 

Figure 1. Construction process of a rammed aggregate pier 
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Figure 2. Auger removing saturated clay from cavity (step 1) 

Figure 3. Aggregate placed into cylindrical cavity (beveled tamper also shown) (step 3) 
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3. The instrument is withdrawn partially and the hole is backfilled with granular material 

fed through the tube. 

4. The backfilling is typically done in layers and the granular backfill is compacted by 

lowering the vibroflot on to the top of the granular backfill. 

5. Alternating backfilling and compacting are done to form a continuous column (Hughes 

and Withers, 1974). 

Figure 5 shows a photograph of the vibroflot suspended from a crane (step 1). Figure 

6 shows the vibroflot penetrating the ground creating a cavity by vibration and air jetting 

(step 2). 

Review of Design Methodology 

Tributary area concept 

The analysis presented for the comparison of rammed aggregate piers and stone 

columns will utilize the unit cell concept. It should be noted that the proprietors oframrned 

aggregate piers (Geopier™ foundation elements) utilize their own design method for the 

design of rammed aggregate pier reinforced foundations. The unit cell, which includes the 

aggregate elements and the surrounding matrix soil, is approximated by a cylinder with an 

effective diameter dependent upon the spacing of the columns or piers. The unit cell is 

illustrated in Figure 7. Goughnour (1983) stated that the effective diameter, De, of the unit 

cell is chosen so that the cross-sectional area of the unit cell is equal to that ofthe tributary 

area per column, i.e. De = 1.05s for a triangular pattern and De = 1.13s for a square pattern, 

where "s" is the distance center to center between columns or piers. The tributary area per 

column is shown in Figure 8 for triangular and square pattern arrangements. 
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Figure 5. Vibroflot suspended from a crane (step 1) 

Figure 6. Vibroflot penetrating the ground creating a cavity by vibration and air 
jetting (step 2) 
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Figure 8. Tributary area definition (after Goughnour, 1983) 
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Barksdale and Brachus (1983) have presented a method for analyzing stone columns 

applying the unit cell concept. This methodology will be utilized to compare stress 

concentrations and settlement reductions of rammed aggregate pier and stone column 

reinforced soils. 

An essential parameter in the analysis is the ratio of aggregate area to the total cross 

sectional area of the unit cell. This parameter is known as the area replacement ratio, as, and 

will later be related to key factors used to compare rammed aggregate piers and stone 

columns. The area replacement ratios for triangular and square arrangements are as follows, 

respectively: 

a, ~O.90{~' )' 

a, ~O.785(~' )' 
where Ds is the diameter of the aggregate foundation. 

Geopier™ foundation design methodology 

(1) 

(2) 

The proprietors of rammed aggregate piers (Geopier Foundation Company) utilize a 

different design method than the tributary area concept. A major difference in the method is 

that the design of a Geopier reinforced soil is typically controlled by settlement criteria rather 

than bearing capacity criteria. Geopier foundation design methodology is not described in 

detail in published literature and the design is typically done under the supervision of 

Geopier foundation engineers. 
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Review of Reinforcement Evaluation 

This review will define several key factors for a comparative evaluation of the effects 

stone columns and rammed aggregate piers have on matrix soils. Key factors used to 

evaluate and compare the behavior of rammed aggregate piers and stone columns include 

their effects on settlement, stress concentrations, rate of consolidation, and the influence of 

lateral stress on the surrounding soils. 

Settlement effects 

Settlement is a primary concern in nearly all types of construction on soils, e.g. 

highways, bridges, storage structures, buildings, embankments, etc. When tolerable levels of 

settlements are exceeded, structures can fail structurally despite large factors of safety against 

shear failure used in foundation design (See Lambe and Whitman, 1969, p. 199-202 for 

general guidance on allowable total and differential settlements for various structures). 

Structural damage is not the only concern when dealing with settlement; settlements must 

also be minimized to not detract from the appearance of a structure causing unsightly cracks 

and tilting as a result of differential settlements. Lambe and Whitman (1969) have listed a 

number of ways in which settlements can interfere with the function ofa structure, e.g. 

cranes and other equipment may not operate correctly; pumps, compressors, etc., may get out 

ofline; tracking units such as radar may become inaccurate; and utilities such as gas, water, 

or sewage may become disconnected. Even though settlement has long been an issue in 

foundation design, techniques to reduce settlements continue to be costly and limited. 

Hughes and Withers (1974) have summarized common settlement reduction 

techniques as follows: 
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1. Piling, using friction alone in deep deposits or point bearing on hard stratum underlying 

the soft clay. 

2. Preloading (preconsolidation), to reduce settlements. 

3. Sand drains, to accelerate consolidation settlements. 

4. Replacing the soft soils, either with stronger material or a buoyant foundation. 

5. Stone columns. 

And in recent years, the use of rammed aggregate piers. 

The first four methods have been well understood for quite some time, but the 

behaviors under load of stone columns and rammed aggregate piers are not yet thoroughly 

understood. Continued research on stone columns and rammed aggregate pier foundation 

elements is necessary for a better understanding of the complex pier-soil matrix interaction 

under loads. 

Although stone columns and rammed aggregate piers are different in many ways as 

previously mentioned, the proprietors of both make similar claims as to the many roles each 

play in reinforcing soft soils. The following list summarizes the primary and secondary roles 

the proprietors of rammed aggregate piers and stone columns have claimed to be inherent 

within the improvement system: 

1. Increased bearing capacity (Lawton and Fox, 1994; Hughes and Withers, 1974). 

2. Increased subgrade drainage, thus increasing the rate of consolidation (Stewart and 

Martin, 1984; Lawton and Fox, 1994; Hughes and Withers, 1974). 

3. Initial compaction ofthe matrix soils during installation (Lawton and Fox, 1994; Hughes 

and Withers, 1974). 
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4. Increased lateral stresses upon installation and loading (Lawton and Fox, 1994; Hughes 

and Withers, 1974). 

5. Partial replacement of softer soils bya stronger material (Lawton and Fox, 1994; Hughes 

and Withers, 1974). 

Ground settlements under load in unreinforced and reinforced soils depend not only 

on the composition ofthe soil and of the aggregate foundation, but also in the complex 

interaction between the two. As a measure of effectiveness of settlement reduction we will 

consider the ratio of settlement of the reinforced soil, Sr, to the settlement of the unreinforced 

soil, Suo The inverse of the settlement ratio is known as the improvement factor. The 

settlement ratio and improvement factor will be denoted as follows, respectively: 

IF=_l_ 
SR 

(3) 

(4) 

Recent case histories and laboratory tests have demonstrated rammed aggregate piers 

to be several times as effective at reducing settlements as stone columns. Table 1 displays a 

summary of SR and IF values measured from recent case histories, laboratory model tests 

and estimates from theory for both stone column and rammed aggregate pier reinforced soils. 

Stress concentrations 

Reportedly, when rammed aggregate piers and stone columns are introduced into soft 

soils, the result is an increase in bearing capacity of the natural soils (Lawton and Fox, 1994). 

Although not a primary function of stone columns and rammed aggregate piers, additional 

drainage is provided by the aggregate foundation. By reducing the drainage length, soft soils 
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Table 1. Summary of settlement ratios (SR) for stone column and rammed aggregate 
pier reinforced soils 

Foundation Type SR IF Obtained Reference 
From 

Stone Columns 0.5 2.0 Elastic Theory Buggy, Martinez, Hussin, and 
Deschamps (1994) 

Stone Columns 0.5 2.0 Load Tests Brinoli, Garassino, and Renzo 
(1994) 

Stone Columns 0.6 1.7 Laboratory Models Stewart and Fahey (1984) 

Stone Columns 0.4 2.5 Est. Method-Elastic Balaam and Booker (1985) 

Stone Columns 0.7 1.4 Est. Method-Plastic Balaam and Booker (1985) 

Stone Columns 0.75 1.3 Estimation Greenwood (1970) 

Stone Columns 0.8 1.3 Estimation Van Imp (1989) 

Rammed Aggregate Piers 0.2 5.0 Case History b Lawton, Fox, and Handy 
(1994) 

Rammed Aggregate Piers 0.17 5.9 Load Tests Lawton and Fox (1994) 

Rammed Aggregate Piers O.lOa lOa Case Histories b Lawton and Fox (1994) 

Rammed Aggregate Piers 0.17a 5.9a Predicted C Lawton and Fox (1994) 

a Average values ofSR and IF from 10 case histories presented by Lawton and Fox (1994). 
b Settlements ofSu were estimated using Bowels (1988) and Schmertmann (1970) and values ofSr were attained 
by means of field surveys. 
C Settlements of Su and Sr were estimated using Bowels (1988), Schmertmann (1970), and Schmertmann et al. 
(1978). 

will consolidate more rapidly upon loading and the result will be a load transfer to the stone 

(Goughnour, 1983; Lawton et ai., 1994). As consolidation continues, a substantial portion of 

the bearing load is transferred to the dense, stiff elements of the aggregate reinforcement. 

The result is a concentration of stress occurring in the aggregate elements and a stress 

reduction in the matrix soils, which may inhibit settlement. The significance of this load 

transfer is evident by the ratio of bearing stress applied to the piers to the bearing stress 
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applied to the adjacent matrix soil. This is known as the stress concentration ratio, n, defined 

as: 

(5) 

where O'r and O's are the total vertical stresses in the aggregate foundation and the surrounding 

soil, respectively. 

Buggy et aI., (1994) have presented a relationship between vertical loads and 

concentrations of stress on stone columns using the unit cell concept. For equilibrium of 

vertical forces, the stresses in the aggregate foundation and the surrounding soil, O'r and O's, 

are related to as and "n" by the following relationships: 

nO' 

0" f = -1 +---'--( n-----,l )=--a-
s 

(6) 

(7) 

where 0' is the average vertical stress over the unit cell. Although the unit cell concept was 

originally used to describe the load transfer mechanism in stone column reinforced soils, 

Lawton and Fox display an agreement to equations (6) and (7) for rammed aggregate pier 

reinforced soils with the following statement, "The percentage of the foundation load carried 

by the aggregate piers is primarily a function of two factors - the areal coverage of the piers 

within the footprint of the footing and the relative stiffuess of the piers compared to the 

matrix soil" (1994, p.964). 

The unit cell concept can be used to design stone column or rammed aggregate pier 

arrangements. After choosing the pier or column diameter (Ds) and spacing (s) for a selected 
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arrangement pattern, as can be determined using equations (1) and (2). Equations (6) and (7) 

can then be used to estimate the stresses on the aggregate foundation and surrounding soil by 

assuming a reasonable stress concentration ratio based on previous measurements or 

estimated from theory. The previous steps can be done in an iterative process until a safe 

bearing load is determined. Stuart and Fayey (1984) state typical stress concentration ratios 

of3 or 4 in stone column reinforced soils while Lawton and Fox (1994) provide results of 

static load tests yielding stress concentration ratios ranging from 10-20. Table 2 displays a 

summary of stress concentration ratios obtained by methods of theory, laboratory models, 

load tests and field measurements for both stone column and rammed aggregate pier 

reinforced soils. 

Influence of lateral stress 

Although it has long been recognized that a variety of foundation systems such as 

rammed aggregate piers, stone columns, tapered piles and other recent innovations can 

induce lateral stress on adjacent soils (Hughes and Withers, 1974; Lawton and Fox, 1994), it 

has not been until recent history that lateral stress has been recognized as a benefactor of the 

performance of the system. Figure 9 illustrates the stresses (vertical and lateral) induced 

Table 2. Summary of stress concentration ratios (n) for stone columns and rammed 
aggregate piers 

Foundation Type n Obtained Overlying Reference 
From Material 

Stone columns 3.8 Field measurements N/N Greenwood and Kirsch (1983) 

Stone columns 4.0 N/N N/N Mitchell (1981) 

Stone columns 4.1 Laboratory models Rigid plate Stuart and Fahey (1984) 

Rammed aggregate piers 10+ Load tests Concrete Lawton and Fox (1994) 
a Information not available 
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Figure 9, Stresses on a stone column under load (after Hughes and Withers, 1974) 

by a loaded stone column and Figure 10 illustrates the stresses (vertical only) on a friction 

pile for comparison. Figure 11 illustrates the stresses (vertical and lateral) induced into the 

matrix soil as a result of impact ramming during installation of a rammed aggregate pier. 

Hughes and Withers (1974) have suggested that in a stone column reinforced soil, significant 

lateral stresses are not induced into the soil until the column is loaded and bulges into the 

adjacent soil matrix, on the other hand, lateral stresses are induced during installation of a 

rammed aggregate pier and lateral stresses are further increased in the event of defonnation 

and budging as settlement occurs under load (Lawton and Fox, 1994). 
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Figure 10. Stresses on a friction pile under load (after Hughes and Withers, 1974) 

Recent measurements of surprisingly small settlements of structures supported by 

aggregate pier reinforced soils have brought the phenomenon of induced lateral stress 

inhibiting settlement into question (Lawton et aI., 1994). Handy (2001) describes a 

theoretical development explaining how inducing high lateral stress can reduce settlement. 

The concept illustrates using elastic theory and Mohr diagrams that by imposing high lateral 

stress the apparent preconsolidation pressure is increased, which in tum permits a 

substantially larger applied vertical stress before consolidation will occur. Figure 12 

illustrates Handy (2001). Handy (2001) explains why this phenomenon has previously not 

been revealed in laboratory load testing. It is shown that this behavior cannot be revealed in 
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LOOSE LIFT I '--- INITIAL STATE 

REMOLDED STATE 

COMPACTED LIFT I 
Bj~~ti\ 

BOTTOM BULB I 
MATRIX SOIL 

Figure 11. Stresses induced into the matrix soil as a result of impact ramming during 
installation of a rammed aggregate pier 

ordinary consolidation testing because high lateral stresses cannot be induced before vertical 

loading. Handy (2001) also points out that conventional triaxial testing in which fluid 

pressure is applied to the top plate cannot duplicate a high initial lateral stress and low 

vertical stress scenario. Other considerations such as a lack offield data demonstrating a 

significant contribution to the performance of the foundation system have also prevented this 

phenomenon from being credited (White et aI., 2000). 
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Figure 12. Mohr-Coulomb representation of Handy (2001) - Inducing lateral stress 
increases horizontal stress from A to C allowing vertical stress to increase 
from B to D before initiating consolidation (from Handy, 2001) 

Rate of consolidation 

Settlement is a primary concern in nearly all types of construction. In many cases the 

magnitude of settlement is not the only consideration, but the time for which it takes 

settlement to occur can also be of importance. As a load is placed on a saturated clay 

stratum, pore-water pressures increase proportionally to the stress increase on the surface, i.e. 

the load is initially carried by the pore-water. As excess pore-water pressures dissipate into 

more pervious stratum, the volume of voids in the soil mass is reduced, causing the soil to 

consolidate and settlement to occur. The time required for the pore-water pressures to 

dissipate is related to the permeability of the soil, i.e. more permeable soils dissipate pore-

water pressures more rapidly than less permeable soils. 
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Additional drainage is provided by the aggregate in the rammed aggregate piers and 

stone columns. The additional drainage enhances excess pore pressure dissipation and 

thereby accelerates the rate of consolidation. As shown in Figure 13; Stewart and Fahey 

(1984) demonstrated through laboratory experiments that the use of stone columns could 

reduce the time for 50% of the excess pore pressure dissipation from 10 months to 6 months. 

It is estimated that similar radial drainage contributions are made with the installation of 

rammed aggregate piers. 

50 ~------------------------------------------~ 

o 

/ 

Test 1 - without 
stone columns 

10 20 30 

Test 2 - with 
stone columns 

40 50 60 

Time after embankment construction (months) 

70 80 

Figure 13. Pore pressure response in a clay stratum as a result of additional drainage 
provided by stone columns demonstrated through laboratory experiments 
(from Stewart arid Fahey, 1984) 
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PROJECT LOCATION AND DESCRIPTION 

At the IA Hwy S/I-3S research site in Des Moines lA, rammed aggregate piers were 

installed within and around the Ramp "C" abutment footprint in an effort to reduce total 

settlement and increase the rate of consolidation in the soft foundation soils. Figure 14 

shows location details for the research site. The primary goal of the pier installation was to 

reduce the construction delay between embankment and abutment construction. The area of 

the abutment is a staged earthwork construction. The initial four to five meters of fill was 

placed in July 2000 and the final four to five meters offill will be placed during spring or 

summer 2001. Figure IS is a representative cross-section of the Ramp "c" embankment. 

In-situ testing was conducted prior to and following installation ofthe rammed 

aggregate piers in order to evaluate initial site conditions and the changes in matrix soil 

properties. Vibrating wire instrumentation was installed for continuous and long-term (S 

year) monitoring of the embankment. Settlement plates were also installed and monitored by 

survey methods. Figure 16 shows the arrangement of rammed aggregate piers installed at 

Ramp "c" along with in-situ test and instrumentation locations. Table 3 lists the 

instrumentation and settlement plates monitored at Ramp "c" and the amount offill placed 

on each following Stage 1 of embankment construction. 

At the adjacent Ramp "B" bridge abutment stone columns were installed in the 

foundation soils to increase slope stability at the interface between the silty alluvium and 

weathered shale. Seven to eight meters of fill was placed during July 2000 and abutment 

construction has begun. The main focus of this investigation is to evaluate embankment 

foundation reinforcement using rammed aggregate piers, however, the stone column 

reinforced soil was investigated for a comparative analysis. 
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Table 3. Ramp "c" instrumentation and settlement plates 

Instrument Description Fill Height (m) Notes 

Settlement Plate No. 1 5.7 Located outside rammed aggregate pier area 

Settlement Plate No.2 4.7 Located between rammed aggregate piers 

Settlement cell location No.1 2.4 One cellon and one adjacent to pier No. 105 

Settlement cell location No.2 2.4 One cell on and one adjacent to pier No. 106 

Settlement cell location No.3 5.7 Located outside rammed aggregate pier area 

Total stress cell location No.1 2.4 One cell on and one adjacent to pier No. 105 

Total stress cell location No.2 2.4 One cell on and one adjacent to pier No. 106 

Total stress cell location No.3 5.7 Located outside rammed aggregate pier area 

Similar to Ramp "C", in-situ testing was conducted and vibrating wire 

instrumentation was monitored. Figure 17 shows the arrangement of stone columns installed 

at Ramp "B" along with in-situ test and instrumentation locations. Table 4 lists the 

instrumentation and settlement plates monitored at ramp "B" and the amount offill placed on 

each. Figure 18 is a photograph of Ramp "c" looking from the south at Ramp "B" and 

Figure 19 is a photograph of Ramp "B" looking from the north at Ramp "C". Also shown in 

both photographs is the instrumentation console fenced in with orange construction fence. 
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Figure 18. Ramp "e" looking from the south 

Figure 19. Ramp "8" looking from the north 
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Table 4. Ramp "B" instrumentation and settlement plates 

Instrument Description Fill Height (m) Notes 

Settlement Plate No.3 7.7 Positioned on a stone column 

Settlement Plate No.4 7.7 Located between stone columns 

Settlement Plate No.5 8.4 Located between stone columns 

Total stress cell location No.1 6.4 One cell on and one adjacent to a stone column 

Total stress cell location No.2 8.6 One cell on and one adjacent to a stone column 

Total stress cell location No.3 9.0 One cell on and one adjacent to a stone column 
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TESTING PROGRAM 

To evaluate site conditions, in-situ and laboratory testing as well as field monitoring 

and verification were performed. In-situ tests were conducted prior to the installation of 

rammed aggregate piers (Ramp "C") and stone columns (Ramp "B") for an evaluation of pre­

construction site conditions. In-situ testing was again conducted after the installation of 

rammed aggregate piers and stone columns for a comparative analysis of soil conditions. In 

addition to in-situ testing, laboratory testing was conducted on representative samples for 

verification of in-situ test results and to obtain additional soil strength parameters. 

Additional activities included observation and verification of rammed aggregate pier and 

embankment construction. Vibrating wire instrumentation was installed at Ramps "C" and 

"B" for continuous and long-term monitoring of the rammed aggregate pier and stone column 

reinforced foundations. The investigative procedures and results of the experiments are 

described herein. 

Drilling and Sampling Procedures 

The borings were performed with a truck-mounted, rotary drill rig using hollow-stem 

augers to advance the boreholes. Representative samples were obtained by 3 inch Shelby 

tube sampling procedures. The Shelby tube sampling procedure utilizes a thin walled, steel 

tube with a sharp cutting edge that is pushed hydraulically into the bottom of the boring to 

obtain relatively undisturbed samples of cohesive or moderately cohesive soils. 

The samples were sealed and returned to the laboratory for further examination, 

classification and testing. Conditions encountered in each of the test borings were monitored 

and recorded by the drill crew. 
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In-Situ Testing Program and Procedures 

In-situ tests have included piezocone penetrometer (CPTU), pressuremeter (PMT), 

standard penetration (SPT), Ko-stepped blade and borehole shear (BHST). The test 

procedures and results are provided herein. 

Piezocone penetrometer (CPTU) 

Originating and later modified by the Dutch, cone penetration soundings (CPT) are 

one of the most useful tests to generate a continuous subsurface profile (Riaund and Miran, 

1992). According to Riaund and Miran (1992), no other conventional geotechnical tool can 

match the CPT for layer definition and low cost per foot. Data is obtained by means of a 

cone hydraulically pushed into the soil while continuous measurements of penetration 

resistance and friction resistance are taken. In addition to the standard cone, the piezocone 

measures pore-water pressures by means of a pore pressure sensor near the penetrometer tip. 

Figure 20 illustrates the main components of the cone penetrometer. 

Penetration soundings generate data that can be used to infer soil type and can be 

correlated to produce a number of soil parameters such as friction angle (~) and relative 

density (Dr). 

CPTU data 

Electric piezocone (CPTU) sounding were performed at 5 points across the IA Hwy 

S/I-3S site prior to the construction of rammed aggregate piers and stone columns. CPTU-l 

through 4 were performed at Ramp "C" and CPTU-S was performed at Ramp "B". CPTU-l 

through 4 are located in the rammed aggregate pier reinforced area and CPTU-5 is located in 

the stone column reinforced area. The piezocone soundings were made at the locations 
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Friction Cone 
sleeve penetrometer 

:: ----,!!J'SJ!II:~ __ ) Cone 

Figure 20. Main components of the cone penetrometer (from Lunne et al., 1997) 

shown in Figures 16 and 17. The CPTU data was obtained using an electric subtraction cone 

with a pore pressure sensor near the tip. The cone was pushed hydraulically and data was 

collected at 5 cm intervals. Data was reported as an average over a 25 cm depth interval. 

Piezocone data for Ramp "C" (CPTU-2) and Ramp "B" (CPTU-5) are presented in 

Figures 21 and 22 where qT is the corrected tip resistance (qc corrected for pore pressure 

effects), 1;, is the sleeve friction, Rr is the friction ratio (1;, / qc x 100%), and J.l is the 

penetration pore-water pressure. From this data, it can be determined that the stone column 

upper zone soils are approximately 1.2 times stiffer than the rammed aggregate pier upper 

zone soils. This was calculated based on the average tip resistance qc, since qc is directly 

proportional to Es, i.e. Es = 3 to 8 qc (Bowles, 1996). The assumption is that the empirical 

correlation factor (3 to 8) for the alluvial clay (Ramp "C") and silty alluvium (Ramp "B") is 
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similar. A full presentation of the CPTU data in both graphical and tabular form is shown in 

Appendix A. The soil was classified based on the Simplified Soil Classification Chart for the 

Standard Electronic Friction cone by Robertson and Campanella (1986) and Robertson et al. 

(1986). The relative density (Dr) was determined using a correlation proposed by 

lamiolkowski et al. (1985). The drained friction angle (4)) was determined using a 

correlation proposed by Kulhawy and Mayne (1990). 

Results ofCPTU-1 through 4 indicate natural alluvial clay and sand formations 

overlaying stiff weathered shale. CPTU-I through 4 indicate similar deposits at each point; 

however, the soundings revealed that the sediment to shale interface dips to the south. As a 

result of the dipping interface, the compressible layer increases in thickness from north to 

south (CPTU-4 to CPTU-I). CPTU points 1-4 encountered 0.5 to I meters of medium to 

stiff clay underlain by a compressible alluvial clay layer varying from 3 to 6 meters in 

thickness. Underlying the alluvial clay is a stratum offme-grained alluvial sand and silty 

sand deposits varying from 4 to 4.5 m thickness. Underlying the alluvial sand is stiff 

weathered shale encountered at depths of 8.5 meters at CPTU-4 to II meters at CPTU-I. 

Results of the CPTU-5 indicate alluvial silts over interbedded alluvial silts and clays 

over alluvial clay underlain by the stiff weathered shale. CPTU-5 encountered 2.8 meters of 

fill underlain by 3 meters of alluvial silt. Underlying the alluvial silt is a 2.5 meter thick 

layer of interbedded alluvial silts and clays. Underlying the interbedded silts and clays is a 

compressible alluvial clay layer of3.5 meter thickness. The stiff weathered shale was 

encountered at a depth of 12 meters. 
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Figure 21. Piezocone penetration data for Ramp "c" (CPTU-2) 
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Figure 22. Piezocone penetration data for Ramp "B" (CPTU-5) 
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Settlement estimates using CPTU data 

Applying a method proposed by Sanglerat (1972) settlements were estimated for 

Ramp "C". CPTU-2 data was used to predict the total settlement under the center of the 

embankment following Stage 1 (4.6 m fill) and Stage 2 (4.6 m fill) ofthe embankment 

construction. Details of these calculations are in Appendix B. Influence factors from 

Winterkom and Fang were used to determine the changes in stress following embankment 

construction (1975, p. 167). The soil compressibility coefficient a was determined by 

dividing the average pressuremeter modulus (discussed later) by the average qc for the 

compressible layer. The resulting a value of 5.8 seems reasonable since it is in the mid range 

of a values recommended by Sanglerat (1972) for this type of soil (low to medium plasticity 

clay). 

The results of these calculations indicate 12.0 cm (4.7 inch) following Stage 1 and an 

additional10.0 cm (4 inch) following Stage 2 for a total settlement of22.1 cm (8.7 in). 

These calculations are estimates of total settlement had the foundation soils not been 

reinforced by rammed aggregate piers. Riaund and Miran (1992) provided information 

evaluating the precision of Sanglerat's method from 17 different sites in France. It was 

determined that the method over predicted settlement by an average of 47% for this database. 

It is noteworthy that the inaccuracy is largely due to the difficulty in determining a. Local 

experience based on settlement observations as well as prior knowledge of modulus values 

on site can help to adjust the soil compressibility coefficient to achieve accurate settlement 

estimates. 
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Standard penetration (SPT) 

Originating in the late 20's in the USA, the standard penetration test (SPT) is one of 

the oldest and simplest forms of subsurface exploration (Nagaraj, 1993). Because of its 

simplicity, the SPT continues to be one of the most readily used in-situ tests. The test 

consists of driving a 35 mm (1.4 inch) inside diameter split sampling tube into the ground by 

repeated blows of a hammer. Figure 23 illustrates the sampling tool used for the SPT. 

The split tube is connected to a drill rod and is hammered into undisturbed soil in the 

bottom ofa borehole. The driving force is a 63 kg (140 lb) hammer with a free fall of762 

mm (30 in). The test is performed by driving the split tube into undisturbed soil in three 

successive increments of150 mm (6 in). The first increment is regarded as seating and the 

Wat~r port 
20mm dia 

Flat tor -_ .... u 
wr'llnch 

ThrGead for --+:g: 
wash pipcz 

Drivll shoe --~~~~I 

Figure 23. Sampling tool used for the SPT (from Nagaraj, 1993) 
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number of blows is discarded. The number of blows for the final two increments (300 mm 

penetration) is regarded as the SPT or "N" value at the mid elevation of the test. Through 

correlation, density and compressibility of the soils can be estimated with SPT-N values. 

SPT data 

SPT soundings were performed after installation of stone columns and rammed 

aggregate piers at the IA Hwy 51I-35 site. The tests were performed in stone columns and 

rammed aggregate piers constructed with the same aggregate type and gradation (Gradation 

A). N-values through the stone columns averaged 10.6 ± 5.0 for 42 tests. In comparison N­

values through rammed aggregate piers averaged 16.7 ± 7.7 for 6 tests. The rammed 

aggregate piers averaged 58% higher N-values, which indicates a stiffer, denser composite 

material. 

Pressuremeter (PMT) 

Originating in Germany and later developed in France, the prebored pressure meter 

(PMT) test is a widely used device for measuring in-situ soil strength. The prebored 

pressuremeter test consists of inserting a cylindrical probe into a borehole and expanding the 

cylinder to pressurize the soil horizontally as shown in the schematic in Figure 24. The 

radial pressure exerted onto the soil and the relative increases in cavity radius are measured 

to give an in-situ pressure-volume (stress-strain) curve of the soil. The pressuremeter test is 

repeated at a range of depths in order to obtain a profile of soil parameters. From the 

pressure-volume curve (referred to as the pressuremeter curve), the pressuremeter modulus, 

Eo, and the limit pressure at failure, PL, which can be correlated to many other soil 

parameters, are obtained (Briaud, 1989). 
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Coaxial Joint 

Probe 

Figure 24. Schematic of the PMT (from Nagaraj, 1993) 

PMT data 

Prebored pressuremeter tests were conducted at two points at Ramp "c" prior to the 

installation of rammed aggregate piers. Pressuremeter tests were again conducted 7 and 73 

days after construction of rammed aggregate piers. The purpose of repeating the tests after 

construction of the piers was to provide an assessment of the lateral stress induced during 

pier installation and offurther changes in lateral stress as consolidation occurs. The prebored 

pressuremeter tests were conducted at the locations shown in Figure 16. All pressuremeter 

tests were conducted within the alluvial clay stratum with the exception of the 5.9 and 6.1 

meter depth tests where sand may have been encountered. All pressuremeter tests were 
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conducted within a 7 meter radius of each other, for this reason it is assumed that tests at like 

depths within this region encountered similar material. 

Figure 25 show a profile of the results of pressure meter tests prior to and following 

installation of rammed aggregate piers. Appendix C shows the pressuremeter curve and 

creep curve for each test. PMT-I and PMT-2 were conducted prior to the installation of the 

rammed aggregate piers. Eo was calculated using the slope of the straight-line portion of the 

pressuremeter curve. The recommended procedure for determining PL is to extend the curve 

manually and read the limit pressure based on the extrapolated curve (Briaud, 1989). As 

shown in the creep volume curves in Appendix C, the creep volume rapidly increases as the 

soil exceeds the elastic portion ofthe curve and increases asymptotically at PL. 

PMT-3 and 4 were conducted 7 and 73 days after installation of the rammed 

aggregate piers, respectively. No significant changes in Eo or PL were evident from these 

tests. Future PMT testing should be conducted to evaluate the long-term effects rammed 

aggregate piers have on Eo and PL. 

Borehole shear (BHST) 

The borehole shear (BHST) test was originated and developed at Iowa State 

University over 30 years ago and has received considerable popUlarity and attention in the 

last twenty-five years (Nagaraj, 1993). The BHST is a simple experiment that can be used to 

determine the cohesion intercept (c) and friction angle (cj» of in-situ soils. The test replaces 

the need for traditional laboratory testing such as consolidated drained (CD) and consolidated 

undrained (CD) triaxial testing saving considerable time and money. Several studies have 

compared the BHST to CD and CU triaxial tests (Wineland, 1976; Schmertmann, 1976) 

supporting a previous assessment that the BHST is usually a drained test (Handy, 1976). 
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Figure 25. Pressuremeter test results prior to and following installation of rammed 
aggregate piers (left) pressuremeter modulus, Eo, (right) limit pressure, PL 
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The test consists of lowering an expandable shear head into a borehole, laterally 

expanding the shear head against the walls under a constant normal stress (0'), allowing the 

soil to consolidate, and pulling vertically on the shear head measuring shear resistance ('r). 

Points are produced on the Mohr-Coulomb shear envelope by measuring the maximum shear 

resistance at successive increments of normal stress applied against the walls of the borehole 

(White and Handy, 2001). The simple apparatus for the test consists of three parts, the shear 

head, the pulling assembly and the control console. A schematic of the borehole shear tester 

is shown in Figure 26. 

BHST data 

Borehole shear tests were performed at Ramp "C" prior to the construction of the 

rammed aggregate piers. The borehole shear tests were conducted at the approximate 

location shown in Figure 16. 

A profile of the results ofBHST-l is shown in Figure 27. Mohr-Coulomb shear 

envelopes for BHST -1 are presented in Appendix D. The initial points displayed as hollow 

points in Figures D 1 through D4 are indicative of inadequate shear plate seating, these 

outliers were ignored in the regression. The final points displayed as hollow points in 

Figures D4 and D5 indicate full expansion of the shear head and these points were also 

ignored in the regression. The coefficient of correlation, R2, ranged from 0.992 to 0.999 for 

each of the tests conducted at BHST-l. The near unity values ofR2 indicate an almost 

perfect association between shear strength and normal stress signifYing low apparatus and 

operator variability. 
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Figure 26. Borehole shear apparatus (from Nagaraj, 1993) 

Ko-stepped blade 

The Ko-stepped blade, designed over twenty years ago at Iowa State University, is the 

most recently developed instrument for the measurement of in-situ lateral stress. The test 

consists of inserting a thin blade into the bottom of a borehole and measuring the amount of 

disturbance caused by successive increases in blade thickness; 3.0, 4.5,6.0 and 7.5 mm. 

The inspiration was to develop an instrument that would account for the inevitable 

soil disturbance caused by the insertion of a measuring device into in-situ soil. By 

introducing known levels of disturbance caused by the thickness of the blades, a relationship 
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Figure 27. BHST-l results (left) angle of internal friction,~, (right) cohesion, c 
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between measured stress and disturbance is produced. This relationship when extrapolated to 

zero thickness results in a measure of in-situ lateral stress. Figure 28 illustrates the 

extrapolation principle ofthe Ko-stepped blade. Although an exponential relationship was 

not anticipated, Handyet ai. (1982) reported the following relationship between blade 

thickness and measured stress: 

(8) 

where Po and PI are mold stresses prior to and after the insertion of the blade, respectively, "t" 

is the blade thickness, and "a" and "b" are regression coefficients. The value of "a" is 

assumed to be 1.0, which gives PI = po when t = O. The value of the "b" coefficient 

represents a stiffuess response of the soil to blade intrusion (Handy et aI., 1982). 

Stepped blade data 

Ko-stepped blade tests were conducted to determine the influence rammed aggregate 

piers and stone columns have on lateral stress. Initially, tests were conducted in the far field 

condition to determine in-situ lateral stress conditions. Tests were again conducted in the 

radial stress direction (O'r) and in the tangential stress direction (0'9) following installation of 

rammed aggregate piers and in the radial stress direction following installation of stone 

columns. Ko-stepped blade data is presented in the "Field Investigation Results and 

Discussion. " 
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Figure 28. Extrapolation principle of the Ko-stepped blade (from Handy et aI., 1989) 

Laboratory Testing Program and Procedures 

Consolidated drained (CD) triaxial compression tests, consolidated undrained (CU) 

triaxial compression tests, unconfined compression tests, confined compression (oedometer) 

tests, and Atterberg limit tests were performed on representative portions of undisturbed 

samples obtained by Shelby tube sampling procedures. A standard proctor compaction test 

was performed on the embankment fill. Aggregate particle-size distribution tests were 

performed on the aggregates used to construct the rammed aggregate piers and stone 

columns. The laboratory tests were conducted to provide verification of in-situ test results 
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and to obtain additional soil strength parameters. The laboratory procedures and results are 

described herein. 

Consolidated drained (CD) triaxial compression 

A series of consolidated drained (CD) triaxial compression tests was conducted to 

determine the approximate shear strength of the soil in terms of effective stresses. Four CD 

tests were conducted on alluvial clay obtained at a depth of2.7 m from Ramp "C". Tests 

were conducted at confining pressures (0"3) of69, 138, 159 and 276 kPa. 

The CD test results were analyzed by plotting the stress path of each specimen to 

failure. By evaluating the stress conditions at failure, the soil's strength parameters cohesion, 

c', and angle of internal friction, $', were determined in terms of effective stresses (' denotes 

effective stress). 

Relatively undisturbed cohesive samples of approximate height-to-diameter ratios of 

2.0 were confined (0"3) permitting drainage. Specimens were then axially loaded (0") - 0"3) at 

a deflection rate slow enough to allow pore pressures to dissipate as load was applied. Load 

measurements were recorded for every corresponding deflection of 0.01 inch. Failure of 

each specimen was determined by a significant drop in axial stress. 

The stress-strain behavior and corresponding changes in volume for the series of CD 

triaxial tests are shown in Figures 29 and 30. As to be expected, higher confining stresses 

resulted in a stiffer material (steeper stress-strain slopes) with greater peak strengths. The 

volume response of all four clay samples was an increase in volume (shown as negative 

volume change in Figure 30). This volumetric expansion during triaxial loading suggests the 

alluvial clay is in an overconsolidated stress state (Lambe and Whitman, 1969). The stress 

paths for the CD tests are shown in the p'-q diagram in Figure 31. A linear regression on the 
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peak stress values generated the Kr-line. The Kr-line is related to the Mohr-Coulomb failure 

envelope by the following relationships: 

sin (cp) = tan (a) (9) 

a 
(10) c=---

cos(a) 

where, a is the angle of the Kr-line, cp is the shear failure angle of a Mohr-Coulomb failure 

envelope, , "a" is the Kr-line intercept on the "q" axis and "c" is the shear stress intercept of a 

Mohr-Coulomb failure envelope. Hence, as determined from the p'-q diagram in Figure 31, 

cp' = 23° and c' = 7 kPa. 
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Figure 29. Stress-strain behavior of en triaxial tests from depth 2.7 m 
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Consolidated undrained (CU) triaxial compression 

A series of consolidated undrained (CU) triaxial compression tests was conducted to 

determine the approximate shear strength of the soil in,terms of total stresses. Three CD tests 

were conducted on alluvial clay obtained at a depth of3.4 m from Ramp "C". Tests were 

conducted at confining pressures (0'3) of 1 0, 41 and 69 kPa. 

The CU test results were analyzed by plotting the stress path of each specimen to 

failure. By evaluating the stress conditions at failure, the strength parameters cohesion, c, 

and angle ofintemal friction, ~, were determined in terms of total stresses. 

Relatively undisturbed cohesive samples of approximate height-to-diameter ratios of 

2.0 were confined (0'3) permitting drainage. Specimens were then axially loaded (0') - 0'3) at 

a deflection rate of approximately 0.2% per min preventing drainage. Load measurements 

were recorded for every corresponding deflection of 0.01 inch. Failure of each specimen was 

determined by a drop in deviator stress. 

The stress-strain behavior for the series ofCU triaxial tests is shown in Figure 32. 

The similarity in the resulting peak shear strengths suggests that all three specimens were 

subjected to the same stress history prior to loading. This indicates that consolidation may 

not have occurred as confining pressures were applied. Two reasons why consolidation may 

not have occurred are (1) selected chamber pressures were not sufficient enough to surpass 

the effective stresses of the specimens prior to the application of chamber pressures or (2) 

complete drainage did not occur while initial consolidation pressures were applied. As a 

result, all three specimens were subjected to the same effective stress state prior to axial 

loading. Because all three specimens were subjected to the same effective stress prior to 

loading, the results resemble that of unconsolidated undrained (UU) triaxial compression 
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tests. This is shown by the "~ = 0 concept" illustrated by the stress paths for the CU tests 

shown in Figure 33. This concept states that specimens of like material subjected to 

equivalent effective stresses prior to loading will result in equivalent shear failure strengths 

(Lambe and Whitman, 1969). The Kr-line generated by the peak stress values has a nearly 

zero slope resulting in ~ = 0°. The resulting "c" of28 kPa for the undrained loading situation 

is actually undrained cohesion (cu), also commonly referred to as the undrained shear 

strength (50) of the soil (Lambe and Whitman, 1969). 

70 

60 

50 

iii' 40 Il. :. ... 

--~---+------~ 

~j ! 
\L0"3 = 10 kPa 

~-4--~~~-~----rl ----~----~----r_--~ 

0"3 = 69 kPa 
t) 

6 30 

20 

10 

0 
0 2 4 6 8 10 12 14 16 

Axial Strain (Ufo) 

Figure 32. Stress-strain behavior of CD triaxial tests from depth 3.4 m 
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Unconfined compression 

A series of unconfined compression tests was conducted to determine the 

approximate shear strength ofthe soil in terms oftotal stress (undrained condition, <j) = 0). 

Nineteen tests were performed on relatively undisturbed samples obtained from Ramp "e". 

Samples were obtained from three locations across the site; Test Points 2,3 and 5 as shown 

in Figure 16. Tests were conducted on samples taken from depths of 1 to 6 meters. 

The unconfined compression test is a special case of the triaxial compression test in 

which the confining pressure is zero, i.e. 03 = O. The parameters determined from the series 

of unconfined compression tests were the unconfined compressive strength of the soil, qu, 

and undrained cohesion, Cu (cu = quf2). 
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Relatively undisturbed cohesive samples of approximate height-to-diameter ratios of 

2.0 were axially loaded at a deflection rate of approximately 2% per min. Load 

measurements were recorded for every corresponding deflection of 0.01 inch. Failure of 

each specimen was determined by a significant drop in axial stress. 

The resulting unconfined compressive strength, qu, is a measure of the load per unit 

area at which the specimen failed. The unconfined compressive strength decreased with 

depth with the exception of a slight increase just shallow of 3 m. This is similar to the 

relative strength conditions indicated by CPT and PMT data. A profile of the results of the 

nineteen unconfined compression tests is shown in Figure 34. 

Confined compression (oedometer) 

A one-dimensional confined compression test was conducted to determine the 

compressibility ofthe alluvial clay at Ramp "C". The test was conducted to provide 

information for a primary consolidation settlement estimate. The test was conducted on a 

sample obtained from a depth of2.7 m and is assumed to be representative of the entire 

alluvial clay layer. 

For this test, a relatively undisturbed soil specimen of approximate height-to-diameter 

ratio of 0.3 was restrained laterally and loaded axially. Each stress increment was maintained 

until excess pore-water pressures were dissipated (time t90). During the consolidation 

process the change in specimen height was recorded as a function of time. The consolidation 

test results were analyzed by plotting void ratio, e, verses the logarithm of pressure applied to 

the sample, this is commonly referred to as the e-Iog-p curve. The e-Iog-p curve for this test 

is shown in Figure 35. 
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Figure 35. e-Iog-p curve for the compressible clay at depth 2.7 m 

For rate of settlement analysis the square-root-of-time compression curves 

(compression verses..Jt;; ) were plotted for several pressure increments. By applying the 

square-root-of-time-method. the coefficient of consolidation, Cv. was calculated and time-

settlement relationships were established. The square-root-of-time compression curves are 

shown in Appendix E. Table 5 lists a summary of average Cv values obtained from this test 

along with two confined compression tests conducted by the Iowa DOT. The average Cv 

value from the three tests was used to establish predicted time-settlement relationships. 
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Table 5. Summary of coefficients of consolidation (cvt 

Test No. Cv AASHTO Depth Moisture Source 
(m2/day). Classification (m) Content (%) 

1 0.232 A-6 (19) 1.0 32 IDOT 

2 0.074 A-6 2.7 31 ISU 

3 0.130 A-6 (15) 4.0 29 IDOT 
a Average c;, = 0.145 m2/day used for time-settlement calculations 

Settlement estimates using confined compression data 

Primary consolidation settlements of up to 25 cm (9.7 in) following Stage 1 (4.6 m 

fill) and an additional 14 cm (5.6 in) following Stage 2 (4.6 m fill) of embankment 

construction have been estimated. The settlement estimates are based on the e-Iog-p curve 

shown in Figure 35. The effective stress was calculated at mid-depth of the consolidating 

layer before construction and after Stages 1 and 2 of embankment construction. The 

settlement estimates are based on a 5.6 m thick consolidating layer (one-dimensional 

drainage). Stress calculations for the compressible layer as well as details of the primary 

consolidation settlement estimates are shown in Appendix F. 

Atterberg limits 

Atterberg limits were conducted on samples obtained from Test Point 3 at Ramp "C". 

The liquid limit test determines the moisture content at which a fine-grained soil will change 

from a plastic to liquid state; the plastic limit test determines the moisture content at which a 

fine-grained soil will change from a semisolid to a plastic state. The difference between the 

liquid limit and the plastic limit is the plasticity index. These tests provide information on 

the plasticity of the soil, which is a basis for soil classification. 
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The liquid limit test consists of a brass cup that is dropped onto a base plate by 

cranking the cam. Soil is placed in the brass cup and a groove is placed in the center. The 

moisture content required to close the groove 0.5 inches at 25 blows is defined as the liquid 

limit. Several tests are performed with increasing moisture contents and the results are 

plotted on a log scale to determine the liquid limit. 

The equipment used for the plastic limit test consists of a smooth rolling plate, which 

is typically glass, and a source of water. The plastic limit is the moisture content at which 

rolling a lI8-inch thick thread of soil will crumble. 

Dry density values and moisture contents were determined from samples obtained 

from Test Points 2 and 3. Dry density values were determined by measurements of sample 

weight, volume and moisture content. 

The results of the classification tests for Ramp "e" indicate fat clay of high plasticity 

underlain by clay oflow to medium plasticity. Moisture contents, dry densities and 

Atterberg limits of the soils encountered at Ramp "e" are shown in Figure 36. 

Standard proctor compaction 

A standard proctor compaction test was conducted on the embankment fill used at 

Ramp "e". This test determines the maximum dry unit weight of compaction and the 

corresponding optimum moisture content. 

The compaction curve is shown in Figure 37. From this graph, the optimum moisture 

content is determined to be 12.5% and the maximum dry unit weight is 18.6 kN/m3 (118.3 

lh/ft\ 
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Figure 37. Standard proctor curve for the embankment fill 

Aggregate particle-size distribution 

A particle-size analysis was conducted on the aggregate used to construct the 

rammed aggregate piers and stone columns at the IA Hwy 5/1-35 site. The piers at Ramp "c" 

and the columns at Ramp "B" were constructed of 1.5 inch open-graded aggregate. Although 

rammed aggregate piers are typically constructed of a conventional roadstone, open-graded 

aggregate was used at this site due to the high phreatic surface in an effort to maximize 

drainage of the compressible soils. For load test comparisons, a single rammed aggregate 

pier was constructed with conventional roadstone. 

The open-graded aggregate will be referred to as Gradation A and is classified as a 

poorly graded gravel (GP) by the Unified Soil Classification System. The roadstone will be 
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referred to as Gradation B and is classified as well-graded gravel with silt and clay (GW-

GM). Figure 38 shows the grain-size distributions of Gradations A and B. 

Long-Term Monitoring Program 

Vibrating wire settlement cells and total stress cells have been installed at Ramp "c" 

for continuous and long-term monitoring of the rammed aggregate pier reinforced foundation 

soils and supported embankment. Total stress cells were installed at Ramp "B" for 

monitoring of the stone column reinforced foundation soils and supported embankment. The 

total stress cells are used to study stress concentrations on rammed aggregate piers and stone 
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Figure 38. Aggregate particle-size distributions for the aggregate used in construction 
of stone columns (Gradation A) and rammed aggregate piers (Gradations A 
and B) 
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columns under an embankment load. In addition to the vibrating wire instrumentation, 

settlement plates have been installed at both ramps for additional settlement monitoring by 

survey methods. The vibrating wire instrumentation and settlement plates were monitored 

continuously during construction of the embankments and will be monitored for the next five 

years. Figures 16 and 17 show the instrumentation and settlement plate locations for Ramp 

"c" and "B", respectively. Figure 39 is a photograph ofa group of settlement cells and total 

pressure cells at Ramp "C". Figure 40 is a photograph of the instrument console where the 

data logger is attached and readings are taken. 

Figure 39. Settlement cells and total stress cells at Ramp "C" 
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Figure 40. Instrumentation console 

Three groups of vibrating wire settlement cells were installed at Ramp "c" prior to 

embankment construction. Settlement cell locations 1 and 2 each include a cell positioned on 

a rammed aggregate pier and a cell positioned on the adjacent matrix soil. Settlement cell 

location number 3 is located outside the rammed aggregate pier reinforced foundation area 

for comparison. 

Survey 

Two settlement plates were installed at Ramp "c" prior to embankment construction. 

Plate number 1 is located outside the rammed aggregate pier area and plate number 2 is 

positioned between rammed aggregate piers. Three settlement plates were installed at Ramp 
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"B" prior to construction of the embankment. Plate number 3 is positioned on a stone 

column and plate numbers 4 and 5 are positioned between stone columns. 

Stress concentrations 

Instrumentation 

Five vibrating wire total stress cells were installed at Ramp "e" prior to embankment 

construction. Stress cell locations 1 and 2 each include a stress cell positioned on top of a 

rammed aggregate pier and a cell positioned on the adjacent matrix soil. Stress cell location 

number 3 is located outside the rammed aggregate pier reinforced area and includes a single 

stress cell positioned on the foundation soil. 

Six vibrating wire total stress cells were installed at Ramp liB". Each stress cell 

location includes a cell positioned on top of a stone column and a cell positioned on the 

adjacent matrix soil. 
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FIELD INVESTIGATION RESULTS AND DISCUSSION 

Site Conditions 

At Ramp "c" foundation soils consist of approximately 0.5 to 1 meter of medium to 

stiff clay underlain by a compressible alluvial clay layer varying from 4 to 6 meters in 

thickness. Underlying the alluvial clay is a stratum of fine-grained alluvial sand and silty 

sand deposits varying from 4 to 4.5 meters in thickness. Underlying the alluvial sand is stiff 

weathered shale at depths of8.5 to 11 meters. 

At Ramp "B" foundation soils consist of approximately 2.8 meters offill underlain by 

3 meters of alluvial silt. Underlying the alluvial silt is a 2.5 meter thick layer of interbedded 

alluvial silts and clays. Underlying the interbedded silts and clays is a compressible alluvial 

clay layer of3.5 meter thickness. Weathered shale was encountered at a depth of 12 meters. 

From piezocone penetration soundings it was determined that the stone column upper 

zone soils are approximately 1.2 times stiffer than the rammed aggregate pier's. This was 

calculated based on the average tip resistance, qc, since qc is directly proportional to Es 

(Bowles, 1996). 

Layout 

Rammed aggregate piers 

The rammed aggregate pier layout was designed as a square layout pattern as shown 

in Figure 41. The piers were designed with a spacing (s) of 1.82 m (6 ft) and a diameter (Ds) 

of 0.76 m (2.5 ft). The area replacement ratio for this arrangement is therefore: 

a, = O. 78s( ~' r = 0.137, i.e., 13.7 % ofthe reinforced area was replaced by rammed 
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o O.76m Rammed aggregate piers 

1.8m 

1.8m 

Figure 41. Rammed aggregate pier layout detail (Ramp "C") 

aggregate piers elements. The length ofthe piers varied from 5-6 m (16.4-19.7 ft) at the 

south edge of the reinforced area to 4.5-5.5 m (14.8-18 ft) at the north edge of the 

reinforcement area depending on the depth of the alluvial clay. 

Stone columns 

The stone column layout was designed as an equilateral triangle layout pattern as 

shown in Figure 42. Like the rammed aggregate pier layout, the stone column layout was 

designed with a spacing (s) ofl.82 m (6 it); however, the stone columns were designed 

slightly larger with a diameter CDs) of 0.91 m (3 ft). The area replacement ratio for the stone 

column arrangement is therefore: a, ~ 0.901 ~' r = 0.227, i.e., 22.7% of the reinforced 

area was replaced by stone column elements. The length of the stone columns varied from 2-
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Figure 42. Stone column layout detail (Ramp "B") 

4 m (6.6-13.1 ft) at the south edge of the reinforced area to up to 14 m (32.8 ft) at the north 

edge of the reinforcement area depending on the depth of the sediment-shale interface. 

Results 

Several key factors were previously defined in the "Review of Literature" and will be 

used to evaluate and compare the performance of rammed aggregate piers and stone columns. 

The results of their effects on settlement, stress concentrations, rate of consolidation and their 

influence oflateral stress on the surrounding soil matrix are included herein. Load tests were 

performed on rammed aggregate piers of two aggregate gradations and a single load test was 

performed on a stone column. The results ofthe load tests and an evaluation of comparative 

stiffuess are included herein. 
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Settlement 

Foundation settlements were continuously monitored during embankment 

construction and thereafter using conventional surveying techniques for both ramps. In 

addition to surveys, vibrating wire settlement cell instrumentation was installed under Ramp 

"c" for continuous, long-term monitoring. 

Ramp "e" 

Predicted·settlement. Settlements ofl2 to 25 cm (4.7 to 9.7 in) following Stage 1 

and an additional 1 0 to 14 cm (4 to 5.6 in) following Stage 2 of embankment construction 

have been estimated using CTPU and confined compression (oedometer) data. Details of the 

settlement estimates using CPTU and confined compression (oedometer) data are shown in 

Appendix B and F, respectively. 

Using the average of the two settlement estimates, time-settlement relationships were 

computed by Terzaghi's consolidation equation: 

(11) 

where "t" is the elapsed time in which a fraction of settlement occurs, "T" is a time factor 

relating the percentage of settlement complete, "H" is the maximum distance through which 

pore-water must flow in order to escape the consolidating layer, and Cy is the coefficient of 

consolidation established from confined compression (oedometer) testing. The time-

settlement relationships were calculated based on the assumption that an average Cy of 0.145 

m2/day represents the entire compressible layer (average determined from 3 confined 

compression tests). 
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Time-settlement relationships for the scenarios of (1) an unreinforced foundation and 

(2) a rammed aggregate pier reinforced foundation were calculated assuming drainage was 

not allowed through the embankment soils. A one-dimensional drainage distance of 5.6 m 

was used for the unreinforced embankment foundation scenario. The rammed aggregate pier 

reinforced foundation experiences double-drainage with a maximum drainage distance of 0.9 

m (half the distance between piers). Actual foundation settlements for the rammed aggregate 

pier reinforced area measured less than 4 cm (1.6 in) as determined from settlement plate 

surveys (discussed later). An additional 4 cm (1.6 in) of settlement is anticipated following 

Stage 2. Figure 43 shows predicted time-settlement relationships for the nonreinforced 

condition along with measured (Stage 1) and predicted (Stage 2) settlements for the 

reinforced foundation. Figures 44 and 45 show more detailed plots ofthe time-settlement 

relationships for Stages 1 and 2 of embankment construction. As illustrated by the time­

settlement relationships the time frame to reach approximately 95% primary consolidation is 

about 10 days for the rammed aggregate pier reinforced foundation compared to about 250 

days had the foundation not been reinforced with rammed aggregate piers. Because of this 

significant increase in time-rate of consolidation, time delays for subsequent bridge 

construction can be significantly reduced. 

Actual settlement. Two settlement plates were installed under Ramp "c" prior to 

embankment construction. Plate number 1 is located outside the rammed aggregate pier area 

and is covered by approximately 5.7 m offill as shown in Table 3. Located near plate 

number 1 is a vibrating wire settlement cell (location number 3) intended for continuous and 

long-tenn settlement monitoring, also covered by 5.7 meters offill. Plate number 2 is 
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positioned between rammed aggregate piers and is covered by approximately 4.7 m of fill. 

Two groups of vibrating wire settlement cells (locations 1 and 2) are located in the rammed 

aggregate pier reinforced area. Each group contains a cell positioned on a rammed aggregate 

pier and a cell positioned on the adjacent matrix soil. During Stage 1 the settlement cells 

were covered by only 2.4 m offill, however, they will be covered to full fill height (9 m 

total) during Stage 2. 

Figure 46 shows the results of settlement plates 1 and 2 as a function of fill height and 

Figure 47 shows the same results as a function of time. Each plot shows considerable scatter, 

however, settlement trends are apparent. Settlement of the reinforced foundation (Sr) was 

approximately 2.5 cm (1.0 in) and settlement of the unreinforced foundation (Su) was 

approximately 6.5 cm (2.6 in). From this settlement data, the settlement ratio for Stage 1 is 

0.38 (SR ~ ~:) and the improvement filctor is 2.3 (IF ~ S~). i.e., rammed aggregate piers 

reduced settlement by a factor of2.3 times that ofthe unreinforced foundation. 

Stage 1 of embankment construction was completed by the beginning of August 

2000. The time-settlement relationship shown in Figure 47 shows that foundation settlement 

in the rammed aggregate pier reinforced area was nearly complete by the middle of the 

August. As predicted, time delays for subsequent bridge construction could be significantly 

reduced. 

Figure 48 shows the results of vibrating wire settlement cell locations 1 and 2 as a 

function of time. The settlement cells show movements of over 20 cm (7.9 in) in the rammed 

aggregate pier reinforced foundation. These results compared to the results of the settlement 

plates (approximately 2 cm) indicate that one of the methods is yielding erroneous results. If 
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Figure 48. Ramp "c" (Stage 1) settlement cell readings as a function of time (locations 
1 and 2) 

the movements of cell locations 1 and 2 (20+ cm) are compared to the movement of cell 

location 3 (13 cm) shown in Figure 49, it is suggested that the error is most likely associated 

with settlement cell locations 1 and 2. The rationale for this deduction is that it is highly 

unlikely that the reinforced matrix soils settled nearly twice as much as the unreinforced 

soils_ The nature ofthe error at settlement cell locations 1 and 2 is unknown at this time. 

Although there may be significant error in the magnitude of the settlement deduced 

from settlement cell locations 1 and 2, a significant observation can be made from the data. 

As shown by the significant overlap of the markers of the settlement plot in Figure 48, it 

appears that the rammed aggregate pier elements and the soft adjacent matrix soils settled 

nearly identical amounts. This suggests that the rammed aggregate piers may be confining 

the adjacent soil matrix preventing excessive settlement. 
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Figure 49. Ramp "c" (Stage 1) settlement cell readings as a function of time (location 
3) 

Ramp "B" 

Three settlement plates were installed under Ramp "B" prior to embankment 

construction. Plate number 3 is positioned on top of a stone column and plates 4 and 5 are 

positioned between stone columns. As shown in Table 4, settlement plates 3, 4 and 5 are 

covered by approximately 7.7, 7.7 and 8.4 m offill, respectively. 

Figure 50 shows the results of settlement plates 3,4 and 5 as a function offill height 

and Figure 51 shows the settlement plate results as a function of time. Plate number 3 settled 

approximately 10 cm (3.9 in) while plates 4 and 5 experienced significantly greater 

settlements of up to 65 cm (25.6 in). From this it can be determined that the soil matrix 

surrounding the stone columns is settling independently from the stone columns. The fact 
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that the matrix soil and stone columns are acting independent of each other suggests that the 

matrix soil is shearing along the perimeter of the stone columns. 

Ramp "B" embankment construction was completed by the middle of August 2000. 

The time-settlement relationship shown in Figure 51 shows that foundation settlement was 

nearly complete by the end of the month. Similar to Ramp "C", time delays for subsequent 

bridge construction could be significantly reduced. 

Stress concentrations 

Ramp "e" 

Five vibrating wire total stress cells were installed at Ramp "C" prior to embankment 

construction. Stress cell locations 1 and 2 as shown in Figure 16 include a cell positioned on 

top of a rammed aggregate pier and a cell positioned on the adjacent matrix soil, each 

covered by approximately 2.4 m offill. Stress cell location number 3 is located outside the 

rammed aggregate pier reinforced area and includes a single stress cell positioned on the 

unreinforced foundation soil. Stress cell location number 3 is currently covered by 

approximately 5.7 m of embankment fill. 

Figure 52 shows readings of stress cell locations 1 and 2 as a function of embankment 

fill height. As a frame of reference the theoretical vertical stress was plotted based on an 

assumed unit weight (y) of20.42 kN/m3 (130 lb/fe) for the embankment soils. Although it 

was expected that the stiffer elements of the rammed aggregate piers carry a larger 

percentage of the theoretical total vertical stress, it was not expected that the soft clay 

surrounding the piers carry a larger percentage ofthe theoretical vertical stress as well (Fox 

and Lawton, 1994; Stewart and Fahey, 1984). All four stress cells at locations 1 and 2 
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Figure 52. Ramp "c" total stress cell locations 1 and 2 

180 

measure increasing stress with time, with greater stress increases on the rammed aggregate 

pIers. 

Figure 53 shows the ratio of the load carried by the piers to the load carried by the 

adjacent soil matrix referred to as the stress concentration ratio (stress on the aggregate 

elements/stress on the soil). Stress concentration ratios greater than one indicate that the 

rammed aggregate piers are bearing more load than the adjacent matrix soil. As expected, as 

consolidation continues, a greater portion ofthe bearing load is transferred to the stiff 

elements of the rammed aggregate piers and the stress concentration ratio increases with time 

(Fox and Lawton, 1994). The average stress concentration ratio at Ramp "c" is 1.7. 

Figure 54 shows data for stress cell location number 3 as a function of fill height. 

Again the theoretical vertical stress was plotted based on an assumed unit weight (y) of20.42 
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kN/m3 (130 Ib/ft3
) for the embankment soils. Similar to stress cell locations number 1 and 2, 

the soil is carrying a larger vertical stress than the calculated theoretical. This was 

unexpected considering the maximum dry unit weight of the fill soil as determined from a 

standard proctor compaction test is 18.6 kN/m3 (118.3 lb/ft\ Unlike stress cell locations 1 

and 2, the total stress at cell location 3 is decreasing with time. This is presumed to be 

because the soils at location number 3 are not confined as they are at locations 1 and 2. 

Ramp "B" 

Six vibrating wire total stress cells were installed at Ramp "B" prior to embankment 

construction. Figure 17 shows the locations of the total stress cells at Ramp "B". Each stress 

cell location includes a cell positioned on top of a stone column and a cell positioned on the 

adjacent soil matrix of the stone column. 6.4, 8.6 and 9.0 m offill cover stress cell locations 

1,2 and 3, respectively. 

Figure 55 shows the total stress cell readings as a function offill height. As a frame 

of reference the theoretical geostatic vertical stress was plotted based on an assumed unit 

weight (y) of20.42 kN/m3 (130 Ib/ft3
) for the embankment soil. Similar to the rammed 

aggregate piers the stone columns are carrying a larger portion of the surface load and the 

stresses are further increasing with time. Unlike the surrounding soil matrix of the rammed 

aggregate piers the load carried by the stone column soil matrix is not increasing with time. 

As previously shown, settlement results have indicated that the rammed aggregate piers and 

their matrix soils experienced similar magnitudes of settlements while stone columns and 

their matrix soils experienced greatly different magnitudes of settlement. It was previously 

indicated that the rammed aggregate pier matrix soils are confined by the piers and are 
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Figure 55. Ramp "B" total stress cell locations 1,2 and 3 

experiencing a stiffening effect because of the piers. As previously suggested, the stone 

columns and their matrix soils are behaving independent of each other. 

Figure 56 shows the stress concentration ratios for cell locations 1, 2 and 3 at Ramp 

liB". The stress concentration ratios indicate that the stone columns are bearing greater load 

than the adjacent soil matrix. As consolidation continues, a greater portion of the bearing 

load is transferred to the stone columns and the stress concentration ratio increases with time. 

The average stress concentration ratio for the total stress cell locations at Ramp "B" is 4.3. 

Induced lateral stress 

Ko-stepped blade tests were conducted to detennine the influence rammed aggregate 

piers and stone columns have on lateral stress development in the matrix soil. Initially, tests 

were conducted in the far field condition to detennine in-situ lateral stress conditions. 
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Figure 56. Stone column stress concentration ratios (Ramp "B") 

After installation of rammed aggregate piers tests were conducted in the radial stress 

direction (O'T) and in the tangential stress direction (0'0). After installation of stone columns 

tests were conducted in the radial direction (O'T) only. Figures 16 and 17 show the locations 

ofKo-stepped blade tests at Ramp "c" and "B", respectively. 

Rammed aggregate piers 

Figure 57 shows the far field lateral stress condition as well as lateral stress 

measurements in the radial and tangential directions adjacent to a rammed aggregate pier. 

Radial stress measurements were taken 0.85 m (2.8 ft) from the edge ofa rammed aggregate 

pier, while tangential stress measurements were taken 0.76 m (2.5 ft) from the edge. The 

tangential effective stress was higher than the radial effective stress through the top half of 



www.manaraa.com

O
r 

--
--

--
--

--
--

--
--

--
--

-
--

--
--

--
--

-
--

--
--

--
--

--
--

-
--

--
-,

 
0

1-
--

-
--

--
--

--
--

--
--

--
--

--
--

--
--

-l
 

0 
I 

----
---

--
--

----
----

----
-

---
-
-
-

-

, 
O

'r=
til

:!
 

1 
.1

 
, , 

21
 

I •
 t.

. 
I 

2 
r 

t i
{ 

• 
I 

2 
, I 

3 
~ 

..
 
,.

I
. 

3 
~ 

I
.
 

i£
.-

I 
3 

, 

0
'0

=
 1

17
.5

 -
1

3
.4

 (z
) 

E
 

/
'
 

.....
. 

, 
I 
4

.
 

/
.
.
 

4 
~ 

\ 
L 

\.
 

41
 

I 
l 

r 
• 

• 

, 
J
)
.
 

5~
 

/ 
5

-
I 

• 
5 

, 
I 

I 
V

I 
~
 

, 
6~ 

j'
 

6 
• 

6 

. 
/ , 

7 
-

j 
7,

 
17

 

8 
__ 

I-
_-

--
--

L_
~ _

_
 l..

. _
_

_
_

_
 ~ __

_
_

 _
_

_
l.

..
_

 _
_

_
_

 
..

..
..

L
..

..
_

._
_

_
 

8 
L_

.-I.
.. 

___ 
.-

1.
 _

_
_

_
_

 ..L
. _

_
 . 
_

_
 ..

..
L

..
-.

_
.-

-1
 _

_
_

_
_

 ....
I..

..-
_

_
_

_
 J.

~ _
__

 J
 

8 
L 
.
•
 --

--
J.

..
 _

_
_

_
 .I

 _
_

_
_

_
 .
J
-

_
_

_
 ...

1 
_

_
_

 i 
_

_
_

_
_

 -
>-

_
_

_
_

_
_

_
 -
-
-
L

-
..

 
__

 
.L-

~ 
o 

20
 

40
 

60
 

80
 

10
0 

12
0 

14
0 

16
0 

a 
2

0
 

40
 

6
0

 
80

 
10

0 
12

0 
14

0 
16

0 
a 

20
 

40
 

60
 

80
 

10
0 

12
0 

14
0 

16
0 

In
 S

itu
 L

at
er

al
 E

ffe
ct

iv
e 

S
tre

ss
 (

kP
a)

 
R

ad
ia

l E
ffe

ct
iv

e 
S

tre
ss

 (
kP

a)
 

Ta
ng

en
tia

l E
ffe

ct
iv

e 
S

tre
ss

 (
kP

a)
 

F
ig

u
re

 5
7.

 
K

o-
st

ep
pe

d 
bl

ad
e 

la
te

ra
l e

ff
ec

ti
ve

 s
tr

es
s 

m
ea

su
re

m
en

ts
: 

(l
ef

t)
 l

at
er

al
 e

ff
ec

ti
ve

 s
tr

es
s 

m
ea

su
re

m
en

ts
 in

 t
he

 f
ar

 
fi

el
d 

co
n

d
it

io
n

, (
m

id
dl

e)
 r

ad
ia

l e
ff

ec
ti

ve
 s

tr
es

s 
m

ea
su

re
m

en
ts

 0
.8

5 
m

 f
ro

m
 e

dg
e 

o
f a

 r
am

m
ed

 a
gg

re
ga

te
 p

ie
r,

 
(r

ig
ht

) 
ta

n
ge

n
ti

al
 e

ff
ec

ti
ve

 s
tr

es
s 

m
ea

su
re

m
en

ts
 0

.7
6 

m
 f

ro
m

 e
d

ge
 o

f a
 r

am
m

ed
 a

gg
re

ga
te

 p
ie

r 



www.manaraa.com

86 

the rammed aggregate pier. This is likely a result of the influence of neighboring rammed 

aggregate piers since tests were conducted adjacent to several piers. 

Figure 58 is a Mohr's circle representation of the results in Figure 57. The Mohr­

Coulomb failure line was added based on cohesion and friction angles determined from 

borehole shear test data. From 0 to 3.7 m (12.1 ft) O'rand O'eare the major and minor 

principle stresses, respectively. At 3.7 m O'r= O'e and O'v is the minor principal stress. At 3.7 

m and deeper O'r is the major principle stress. 

The results of the Ko-stepped blade tests indicate that a group of rammed aggregate 

piers induces lateral stress in both the radial and tangential directions, and as a result of this, 

may inhibit settlement (Handy, 2001). 

Stone columns 

Figure 59 shows radial stress (O'r) measurements 0.7 m (2.3 ft) from the edge ofa 

stone column. At this location lateral stress development was variable. Note that it has 

previously been discussed that lateral stresses are typically not induced adjacent to a stone 

column until deformation and budging under load (Hughes and Withers, 1974). 

Load test results 

Full-scale load tests were conducted on two rammed aggregate piers and one stone 

column. Figure 60 shows a photograph of the load test setup. The rammed aggregate piers 

(one composed of Gradation A and one of Gradation B) were each approximately 6 m (19.7 

ft) long. Tests were conducted 3 days after installation ofthe Gradation A pier and two days 

after installation of the Gradation B pier. A tell-tale was installed at the bottom of the 
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Figure 59. Ko-stepped blade radial effective stress measurements 0.70 m from edge of a 
stone column 

rammed aggregate pier constructed with Gradation A aggregate. Figure 16 shows the 

rammed aggregate pier load test locations. 

The stone column (Gradation A) was approximately 5.0 m (16.4 ft) long and was 

tested 13 days after installation. Figure 17 shows the location of the stone column load test. 

The comparative load test results are shown in Figure 61. Results indicate that the rammed 

aggregate piers are much stiffer than the stone column. At 200 kPa (4.2 ksf) the stone 

column settled 21 mm (0.83 in) while the rammed aggregate piers each settled only 2 to 4 



www.manaraa.com

89 

Figure 60. Full-scale load test setup 

mm (0.08 to 0.15 in) despite the fact that CPTU results indicate that the stone column upper 

zone soils are 1.2 time stiffer than the rammed aggregate pier upper zone soils. The tell-tale 

at the bottom of the Gradation A pier experienced less than 1 mm « 0.04 in) settlement. 

There was very little difference between the rammed aggregate pier constructed with 

Gradation A aggregate and the rammed aggregate pier constructed with Gradation B 

aggregate. 
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Comparative stiffness 

Modulus values calculated from full-scale load tests are shown in Figure 62. It 

should be noted that the modulus parameter referred to at this time is not equivalent to the 

commonly known Young's modulus but is rather a measure of stiffuess determined from each 

load test. The modulus values were calculated by the average applied stress divided by 

settlement. . The unload portion of the data was not considered in this plot. A best-fit 

hyperbolic decay function was fitted to the data and was used to plot comparative stiffuess 

between the stone column and rammed aggregate piers. 

200 
... 

• 91 cm (36 inch) Stone Column - Gradation A (R2=0.93) -.. 76 cm (30 inch) Geopier - Gradation A (R2=0.98) t: 150 ... 
GI 
E <> 76 cm (30 inch) Geopier - Gradation B (R2=0.88) 
GI 

-~ C'? 1/1 
E-

- 1/1 Z 1/1 
:E~ 
-;11) 100 
::l"C 

- GI ::l- • "Co. 
OD. 
:Eca 

CD 
Cl 
I! 
CD 50 > 
~ 

... 

a 
a 200 400 600 800 

Average Applied Stress (kPa) 

Figure 62. Rammed aggregate pier and stone column modulus verses applied stress 
(calculated from load test data) 
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Figure 63 shows the stiffuess ratio between the rammed aggregate piers and the stone 

column. The stiffuess ratio is the ratio of modulus values calculated from the load tests then 

multiplied by the ratio of soil stiffuess. As previously mentioned, cone penetration data was 

used to determine the stiffuess of Ramp "e" and "B" soils prior to improvements. 

Because the stone column exceeded the displacement capacity of the loading device 

during testing, the solid line indicating measured stiffuess in Figure 63 only extends to 250 

kPa. However, the best-fit curves from Figure 62 were used to extend the stiffuess ratio to 

higher loads and are shown as the projected stiffuess ratios indicated by dashed lines. The 

results of the full-scale load tests indicate that the rammed aggregate piers are about 10 to 15 

times stiffer than the stone column. 

25 

20 

.2 15 
~ 
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.... 
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Figure 63. Stiffness ratio of rammed aggregate pier to stone column foundation 
elements 
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Comparative standard penetration (SPT) values 

SPT soundings were performed through stone columns and rammed aggregate piers 

for a measure of comparative density. The tests were performed in stone columns and 

rammed aggregate piers constructed with the same aggregate type and gradation (Gradation 

A). SPT N-values in stone columns averaged 10.6 ± 5.0 for 42 tests. In comparison N-

values in rammed aggregate piers averaged 16.7 ± 7.7 for 6 tests as shown in Figure 64. The 

rammed aggregate piers averaged 58% higher N-values, indicating a stiffer, denser 

composite material. 

o Stone column (Ave=10.6, Std dev=5.0, n=42) 

III Rammed aggregate pier (Ave=16.7, Std dev=7.7, n=6) 

18 

16 

14 

III 12 
CI) 
:l 
iii 
> 

10 
I 

Z 8 ...: 
Q. 
UI 6 

4 

2 

0 

Figure 64. Comparative SPT -N values in stone columns and rammed aggregate piers 
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SUMMARY AND CONCLUSIONS 

The following conclusions have been made based on the information gathered 

throughout the course of this investigation: 

1. At Ramp "C" following completion of Stage 1 embankment construction under 

approximately 5 m (16 ft) offill, the unreinforced foundation soils settled on the order of 

6.5 to 13 cm (2.6 in to 5.1 in) while the rammed aggregate pier reinforced foundation 

soils settled only 2.5 cm (1 in). This calculates to settlement ratios (SR) ranging from 

0.38 to 0.19 and improvement factors of2.3 to 5.2, i.e., rammed aggregate piers reduced 

settlements by as much as 2.3 to 5.2 times that of an unreinforced foundation. 

2. Rate of consolidation estimations predicted that up to 250 days would be necessary after 

embankment construction before subsequent bridge construction could safely begin if the 

foundation under Ramp "C" were not reinforced. Settlement plate surveys illustrated that 

settlement of the rammed aggregate pier reinforced foundation was nearly complete three 

to four weeks after embankment construction. Because of this significant increase in rate 

of consolidation, delays for subsequent bridge construction could be significantly 

reduced. 

3. Vibrating wire total stress cells indicate that a greater portion ofthe bearing stress is 

carried by the stiffer elements of rammed aggregate piers and stone columns than 

adjacent matrix soils. This load transfer mechanism creates stress concentrations on the 

piers and columns. Following Stage 1 the average stress concentration ratio for the 

rammed aggregate piers is 1.7. The average stress concentration ratio for the stone 

columns is 4.3. Both indicate an increase in stress concentration with time 
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4. Vibrating wire total stress cells indicate that the rammed aggregate pier matrix soils are 

carrying a larger percentage of the embankment load than anticipated, while the stone 

column matrix soils are carrying a smaller percentage than anticipated. Furthermore, 

stresses on the rammed aggregate pier matrix soils are increasing with time while stresses 

on the stone column matrix soils and stresses on unreinforced soils are decreasing with 

time or remain constant. The increasing stresses on the rammed aggregate pier matrix 

soils are presumed to be due to a stiffening effect created by the piers as a result of soil 

confinement. 

5. The rammed aggregate pier elements and the soft adjacent matrix soils settled nearly 

identical amounts, this coupled with the fact that the matrix soil is bearing more load than 

anticipated further suggests that the piers are confining the surrounding soil matrix. As a 

result the surrounding matrix soils are stiffened under load. 

6. At Ramp "B" following completion of approximately 8 m (26 ft) of embankment fill, the 

stone columns settled 10 cm (3.9 in) while the adjacent matrix soils settled up to 65 cm 

(25.6 in). This coupled with the fact that the matrix soil is bearing considerable less 

stress than anticipated suggests that the stone columns and surrounding soils are acting 

independently of each other. 

7. Ko-stepped blade results indicate that the interaction of a group of rammed aggregate 

piers induces lateral stress in both the radial and tangential directions, as a result, may 

inhibit settlement. Lateral stress development adjacent to the stone columns was 

variable. 

8. Full-scale load test results indicate that rammed aggregate piers constructed of 

Gradations A and B are much stiffer than stone columns of Gradation A. At 200 kPa (4.2 
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ksf) the stone column settled 21 mm (0.83 in) while each rammed aggregate pier settled 

only 2 to 4 mm (0.08 to 0.15 in) despite the fact that CPTU results indicate that the stone 

column upper zone soils are approximately 1.2 times stiffer than the rammed aggregate 

pier upper zone soils. The tell-tale at the bottom of the Gradation A pier experienced less 

than 1 mm « 0.04 in) settlement. There was very little difference between the rammed 

aggregate pier constructed with Gradation A aggregate and the rammed aggregate pier 

constructed with Gradation B aggregate. 

9. Load test modulus values indicate that rammed aggregate piers are about 10 to 15 times 

stiffer than stone columns. 

10. Standard penetration (SPT) blow counts in rammed aggregate piers were an average 58% 

larger than in stone columns constructed with the same aggregate. This indicates that the 

piers are a stiffer, denser composite material. N-values in stone columns averaged 10.6 ± 

5.0 for 42 tests. In comparison N-values through rammed aggregate piers averaged 16.7 

± 7.7 for 6 tests. 
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RECOMMENDATIONS FOR FURTHER STUDY 

1. Perform standard penetration (SPT) tests in rammed aggregate piers constructed with 

Gradation B aggregate. This would be beneficial for comparison to piers constructed 

with Gradation A aggregate as well as further comparison to stone columns. 

2. Use the finite element method (FEM) to determine how O'r and O'e interact with changes 

in depth for various rammed aggregate pier arrangements and spacings. 

3. Perform pressuremeter (PMT) tests to determine if there are time dependant changes in 

PL and Eo within rammed aggregate pier reinforced soils. 

4. Investigate how stress concentrations vary with respect to overlying material type (rigid 

or soft) for rammed aggregate pier reinforced foundation soils. 

5. Investigate how stress concentrations vary with respect to various pier arrangements and 

spacings. 
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APPENDIX A: 

PIEZOCONE PENETRATION (CPTU) DATA 
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Depth 

(m) 

0.15 

0.40 

0.65 

0.90 

1.15 

1.40 

1.65 

1.90 

2.15 

2.40 

2.65 

2.90 

3.15 

3.40 

3.65 

3.90 

4.15 

4.40 

4.65 

4.90 

5.15 

5.40 

5.65 

5.90 

6.15 

6.40 

6.65 

6.90 

7.15 

7.40 

7.65 

7.90 

8.15 

8.40 

8.65 

8.90 

9.15 

9.40 

9.65 

9.90 

10.15 

10.40 

10.65 

10.90 

11.15 

11.40 

11.65 

11.90 
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Table At. Piezocone penetration data for CPTU-l 

331 

421 

529 

421 

355 

259 

399 

685 

764 

885 

1271 

2193 

1955 

1248 

1097 

765 

797 

777 

1118 

1058 

820 

940 

881 

657 

704 

961 

1864 

3256 

5226 

4631 

4407 

6479 

5446 

6611 

6791 

7141 

4732 

4158 

4466 

4589 

4472 

4095 

4828 

13102 

14891 

13281 

10916 

18005 

t;, 

(kPa) 

14.6 

21.6 

20.3 

20.1 

12.1 

12.4 

14.4 

21.1 

23.4 

41.0 

78.1 

155.9 

121.0 

59.9 

41.8 

23.0 

19.5 

18.6 

42.3 

46.2 

19.3 

31.0 

30.6 

12.4 

13.8 

10.5 

19.5 

16.5 

30.6 

38.3 

27.6 

37.9 

32.9 

41.9 

47.3 

51.1 

28.7 

17.8 

23.0 

28.9 

27.6 

22.2 

32.8 

79.3 

98.6 

101.7 

70.9 

144.6 

Rr 

(%) 

4.63 

5.23 

4.68 

4.79 

3.41 

4.82 

3.62 

3.08 

3.06 

4.61 

6.09 

7.09 

6.16 

4.79 

3.81 

2.99 

2.45 

2.39 

3.72 

4.36 

2.37 

3.29 

3.42 

1.88 

1.95 

1.22 

1.32 

0.79 

0.59 

0.87 

0.64 

0.58 

0.61 

0.63 

0.70 

0.72 

0.60 

0.43 

0.51 

0.63 

0.62 

0.55 

0.71 

0.60 

0.66 

0.77 

0.69 

0.81 

7.38 

2.88 

1.56 

1.16 

0.54 

0.46 

0.45 

0.59 

0.62 

1.02 

1.84 

3.51 

2.60 

1.23 

0.82 

0.43 

0.35 

0.32 

0.71 

0.75 

0.30 

0.47 

0.45 

0.18 

0.19 

0.14 

0.25 

0.21 

0.38 

0.46 

0.33 

0.44 

0.37 

0.46 

0.51 

0.54 

0.30 

0.18 

0.23 

0.28 

0.26 

0.21 

0.30 

0.72 

0.87 

0.88 

0.59 

1.19 

Q 

169.0 

53.7 

40.7 

23.4 

15.0 

8.6 

11.6 

18.2 

19.1 

21.0 

28.8 

48.1 

40.8 

24.3 

20.2 

13.0 

13.0 

12.1 

17.3 

15.6 

11.3 

12.7 

11.4 

7.8 

8.1 

11.2 

22.7 

39.5 

63.1 

54.3 

50.3 

73.1 

59.8 

71.3 

71.7 

73.9 

47.4 

40.6 

42.7 

43.2 

41.2 

36.8 
42.8 

116.6 

129.3 

112.5 

89.7 

145.9 



www.manaraa.com

Depth 

(m) 

0.15 

0.40 

0.65 

0.90 

1.15 

1.40 

1.65 

1.90 

2.15 

2.40 

2.65 

2.90 

3.15 

3.40 

3.65 

3.90 

4.15 

4.40 

4.65 

4.90 

5.15 

5.40 

5.65 

5.90 

6.15 

6.40 

6.65 

6.90 

7.15 

7.40 

7.65 

7.90 

8.15 

8.40 

8.65 

8.90 

9.15 

9.40 

9.65 

9.90 

10.15 

10.40 

10.65 

10.90 

11.15 

11.40 

11.65 

11.90 

f.l 
(kPa) 

-3.4 

-1.5 

-17.4 

-29.8 

-23.6 

-15.3 

-5.7 

14.2 

35.3 

40.5 

45.9 

86.9 

75.4 

71.2 

75.4 

81.1 

107.4 

120.2 
121.6 

128.7 

114.3 

132.4 

134.2 

142.6 

160.8 

152.2 

90.5 

48.5 

-2.6 

-2.8 

-2.6 

-3.9 

-5.0 

-3.7 

-3.4 

-3.0 

-3.2 

1.5 

5.1 

7.3 

9.2 

12.3 

14.8 

17.1 

19.2 

21.8 

24.7 

26.8 
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Table At. (continued) 

(kPa) 

2.94 

7.84 

12.74 

17.63 

22.32 

26.95 

31.57 

36.20 

40.82 

45.45 

50.07 

54.70 

59.32 

63.95 

68.57 

73.20 

77.82 

82.45 

87.07 

91.70 

96.32 

100.95 

105.57 

110.20 

114.82 

119.44 

123.89 

128.29 

132.69 

137.09 

141.49 

145.89 

150.29 

154.69 

159.09 

163.49 

167.89 

172.29 

176.69 

181.09 

185.49 

189.89 
194.32 

199.37 

204.62 

209.87 

215.12 

220.37 

J.l<, 

(kPa) 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.0 

0.6 

2.9 

5.4 

7.8 

10.3 

12.7 

15.2 

17.6 

20.1 

22.5 

25.0 

27.4 

29.9 

32.3 

34.8 

37.2 

39.7 

42.1 

44.6 

47.0 

49.5 

51.9 

54.4 

56.8 

59.3 

61.7 

64.2 

66.6 

69.1 

71.5 

74.0 

76.4 

78.9 

81.3 

83.8 

86.2 

88.7 

91.1 

93.6 

96.0 

98.5 

(kPa) 

2.94 

7.84 

12.74 

17.63 

22.32 

26.95 

31.57 

35.61 

37.88 

40.06 

42.23 

44.41 

46.58 

48.76 

50.93 

53.11 

55.28 

57.46 

59.63 

61.81 

63.98 

66.16 

68.33 

70.51 

72.68 

74.85 

76.85 

78.80 

80.75 

82.70 

84.65 

86.60 

88.55 

90.50 

92.45 

94.40 

96.35 

98.30 

100.25 

102.20 

104.15 

106.10 

108.08 

110.68 

113.48 

116.28 

119.08 

121.88 

-0.01 

0.00 

-0.03 

-0.07 

-0.07 

-0.07 

-0.02 

0.Q2 

0.04 

0.04 

0.03 

0.04 

0.03 

0.05 

0.06 

0.09 

0.12 

0.14 

0.09 

0.\0 

0.11 

0.12 

0.13 

0.19 

0.20 

0.13 

0.02 

0.00 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.01 

-0.02 

-0.02 

-0.02 

-0.02 

-0.02 

-0.02 

-0.02 

-0.01 

0.00 

-0.01 

-0.01 

0.00 
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Table At. (continued) 

Depth F Ie cp Dr 

(m) (%) (Degrees) (%) 

0.15 4.44 2.35 31.7 52.8 

0.40 5.24 2.61 30.5 45.7 

0.65 3.93 2.60 30.5 45.3 

0.90 4.98 2.85 28.6 34.1 

1.15 3.62 2.90 27.2 25.8 

1.40 5.36 3.20 25.3 14.1 

1.65 3.91 3.01 27.0 24.2 

1.90 3.25 2.81 29.3 37.9 

2.15 3.23 2.79 29.6 40.2 

2.40 4.88 2.87 30.2 43.6 

2.65 6.40 2.85 31.8 53.2 

2.90 7.29 2.74 34.3 68.1 

3.15 6.38 2.75 33.6 64.2 

3.40 5.06 2.84 31.4 50.6 

3.65 4.06 2.83 30.7 46.3 

3.90 3.32 2.93 28.8 35.4 

4.15 2.72 2.88 28.9 36.0 

4.40 2.68 2.90 28.7 34.7 

4.65 4.11 2.89 30.4 44.6 

4.90 4.78 2.96 30.0 42.5 

5.15 2.67 2.92 28.7 34.7 

5.40 3.70 2.97 29.3 38.1 

5.65 3.95 3.02 28.9 35.8 

5.90 2.28 3.02 27.4 27.0 

6.15 2.34 3.01 27.7 28.5 

6.40 1.25 2.75 29.1 37.0 

6.65 1.12 2.47 32.2 55.6 

6.90 0.53 2.09 34.8 71.3 

7.15 0.60 1.95 37.0 84.5 

7.40 0.85 2.08 36.4 80.7 

7.65 0.65 2.05 36.1 78.9 

7.90 0.60 1.89 37.9 89.6 

8.15 0.62 1.97 37.0 84.3 

8.40 0.65 1.92 37.9 89.6 

8.65 0.71 1.94 37.9 90.0 

8.90 0.73 1.93 38.1 91.2 

9.15 0.63 2.06 36.1 79.1 

9.40 0.45 2.06 35.4 75.1 

9.65 0.54 2.07 35.7 76.9 

9.90 0.66 2.11 35.8 77.4 

10.15 0.64 2.12 35.7 76.4 

10.40 0.57 2.14 35.2 73.6 

\0.65 0.71 2.13 35.9 78.0 

\0.90 0.61 1.73 40.6 \06.3 

11.15 0.67 1.71 41.2 \09.6 

11.40 0.78 1.80 40.6 \06.0 

11.65 0.66 1.84 39.6 \00.0 

11.90 0.81 1.73 41.9 114.0 
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Table A2. Piezocone penetration data for CPTU-2 

Depth qT 1;, Rr f,jcr'vo Q 
(m) (kPa) (kPa) (%) 

0.15 985 50.9 5.19 20.26 398.1 

0.40 679 37.0 5.47 5.09 92.2 

0.65 395 14.9 3.76 1.15 30.3 

0.90 291 15.7 5.44 0.91 15.9 

1.15 260 14.6 5.61 0.66 10.8 

1.40 520 28.2 5.39 1.05 18.4 

1.65 748 37.2 4.98 1.19 22.9 

1.90 804 43.5 5.41 1.23 21.8 

2.15 984 68.4 6.89 1.81 25.0 

2.40 1361 120.9 8.94 3.04 33.2 

2.65 1303 89.6 6.93 2.14 29.9 

2.90 1081 65.7 6.08 1.49 23.3 

3.15 846 55.5 6.55 1.20 17.0 

3.40 653 32.8 5.00 0.68 12.2 

3.65 541 20.9 3.86 0.41 9.3 

3.90 540 18.4 3.40 0.35 8.8 

4.15 551 30.3 5.27 0.55 8.6 

4.40 723 46.9 6.48 0.82 11.2 

4.65 572 31.8 5.57 0.54 8.2 

4.90 551 32.4 5.88 0.53 7.5 

5.15 440 20.5 4.66 0.32 5.4 

5.40 407 15.5 3.81 0.24 4.6 

5.65 436 12.8 2.99 0.19 4.8 

5.90 852 16.3 2.40 0.23 10.5 

6.15 4096 17.0 0.42 0.24 55.1 

6.40 4983 27.0 0.54 0.36 65.6 

6.65 3352 42.1 1.54 0.55 42.5 

6.90 3861 19.7 0.51 0.25 47.8 

7.15 5477 34.5 0.63 0.43 66.8 

7.40 6680 50.9 0.76 0.62 79.8 

7.65 6783 55.4 0.82 0.66 79.2 

7.90 5979 42.7 0.72 0.50 67.9 

8.15 6983 56.5 0.81 0.64 77.8 

8.40 4925 39.8 0.80 0.44 53.2 

8.65 3604 19.2 0.53 0.21 37.6 

8.90 3312 15.9 0.48 0.17 33.6 

9.15 3788 24.9 0.66 0.26 37.9 

9.40 3401 20.9 0.62 0.21 33.1 

9.65 2693 19.9 0.94 0.20 25.3 

9.90 5770 46.5 0.81 0.46 55.0 

10.15 8497 58.2 0.69 0.56 79.9 

10.40 13552 76.8 0.56 0.72 124.9 

10.65 17301 121.4 0.70 1.11 155.9 

10.90 14291 105.3 0.75 0.94 125.4 

11.15 17451 113.0 0.65 0.98 149.5 

11.40 23696 68.0 0.31 0.58 198.6 



www.manaraa.com

109 

Table A2. (continued) 

Depth I-L O"vo I-Lo 0"' vo Bq 

(m) (kPa) (kPa) (kPa) (kPa) 

0.15 0.6 2.94 0.0 2.94 0.00 

0.40 -45.4 7.84 0.0 7.84 -0.07 

0.65 -41.1 12.73 0.0 12.73 -0.11 

0.90 -29.9 17.42 0.0 17.42 -0.11 

1.15 -22.3 22.05 0.0 22.05 -0.09 

1.40 -4.0 26.67 0.0 26.67 -0.01 

1.65 43.2 31.30 0.0 31.30 0.06 

1.90 66.3 35.92 0.6 35.33 0.09 

2.15 82.3 40.55 2.9 37.61 0.08 

2.40 100.4 45.17 5.4 39.78 0.07 

2.65 99.2 49.80 7.8 41.96 0.07 

2.90 98.0 54.42 10.3 44.13 0.09 

3.15 112.7 59.05 12.7 46.31 0.13 

3.40 124.8 63.67 15.2 48.48 0.19 

3.65 129.6 68.30 17.6 50.66 0.24 

3.90 143.0 72.92 20.1 52.83 0.26 

4.15 150.4 77.55 22.5 55.01 0.27 

4.40 148.0 82.17 25.0 57.18 0.19 

4.65 157.3 86.80 27.4 59.36 0.27 

4.90 180.6 91.42 29.9 61.53 0.33 

5.15 180.2 96.05 32.3 63.71 0.43 

5.40 204.4 100.67 34.8 65.88 0.55 

5.65 243.3 105.30 37.2 68.06 0.62 

5.90 276.4 109.91 39.7 70.22 0.32 

6.15 13.7 114.37 42.1 72.23 -0.01 

6.40 -0.6 118.77 44.6 74.18 -0.01 

6.65 0.3 123.17 47.0 76.13 -0.01 

6.90 0.3 127.57 49.5 78.08 -0.01 

7.15 -1.7 131.97 51.9 80.03 -0.01 

7.40 -2.2 136.37 54.4 81.98 -0.01 

7.65 -4.4 140.77 56.8 83.93 -0.01 

7.90 -3.6 145.17 59.3 85.88 -0.01 

8.15 -2.9 149.57 61.7 87.83 -0.01 

8.40 -3.7 153.97 64.2 89.78 -0.01 

8.65 -0.6 158.37 66.6 91.73 -0.02 

8.90 3.2 162.77 69.1 93.68 -0.02 

9.15 5.7 167.17 71.5 95.63 -0.02 

9.40 8.0 171.57 74.0 97.58 -0.02 

9.65 11.0 175.97 76.4 99.53 -0.03 

9.90 13.5 180.40 78.9 101.51 -0.01 

10.15 15.9 185.45 81.3 104.11 -0.01 

10.40 18.5 190.70 83.8 106.91 0.00 

10.65 19.2 195.95 86.2 109.71 0.00 

10.90 23.4 201.20 88.7 112.51 0.00 

11.15 25.5 206.45 91.1 115.31 0.00 

11.40 27.6 211.70 93.6 118.11 0.00 
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Table A2. (continued) 

Depth F Ie ~ Dr 

(m) (%) (Degrees) (%) 
0.15 5.19 2.15 36.9 84.1 

0.40 5.51 2.49 32.8 59.4 

0.65 3.91 2.69 29.1 36.9 

0.90 5.74 3.01 26.9 23.7 

1.15 6.12 3.16 25.8 17.0 

1.40 5.71 2.96 28.6 34.2 

1.65 5.18 2.86 30.0 42.3 

1.90 5.66 2.91 30.0 42.7 

2.15 7.25 2.94 30.9 47.5 

2.40 9.19 2.93 32.3 56.0 

2.65 7.15 2.88 31.9 54.0 

2.90 6.40 2.92 30.9 47.9 

3.15 7.06 3.05 29.6 40.2 

3.40 5.56 3.09 28.3 32.2 

3.65 4.42 3.12 27.3 26.1 

3.90 3.94 3.11 27.2 25.5 

4.15 6.39 3.24 27.2 25.5 

4.40 7.32 3.19 28.4 32.7 

4.65 6.56 3.27 27.2 25.4 

4.90 7.04 3.32 26.9 23.9 

5.15 5.96 3.39 25.8 16.9 

5.40 5.07 3.40 25.3 14.2 

5.65 3.89 3.32 25.5 15.7 

5.90 2.19 2.90 28.7 34.5 

6.15 0.43 1.93 36.1 79.1 

6.40 0.56 1.91 37.0 84.3 

6.65 1.31 2.28 35.0 72.6 

6.90 0.53 2.02 35.6 76.3 

7.15 0.64 1.94 37.3 85.9 

7.40 0.78 1.92 38.1 91.3 

7.65 0.83 1.94 38.2 91.4 

7.90 0.73 1.96 37.5 87.4 

8.15 0.83 1.95 38.2 91.6 

8.40 0.83 2.08 36.5 81.2 

8.65 0.56 2.13 34.9 72.0 

8.90 0.50 2.15 34.5 69.3 

9.15 0.69 2.17 35.1 72.8 

9.4Q 0.65 2.21 34.5 69.4 

9.65 0.79 2.35 33.3 62.5 

9.90 0.83 2.07 36.9 84.0 

10.15 0.70 1.90 38.7 94.8 

10.40 0.57 1.69 40.9 107.8 

10.65 0.71 1.67 42.0 114.4 

10.90 0.75 1.75 41.0 108.5 

11.15 0.66 1.66 41.9 113.9 

11.40 0.29 1.36 43.3 122.3 
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Table A3. Piezocone penetration data for CPTU-3 

Depth qT f. Rr f,/cr'vo Q 
(m) (kPa) (kPa) (%) 

0.15 1610 78.0 5.10 31.91 641.2 

0.40 1669 59.9 3.71 8.02 226.7 

0.65 970 41.9 4.32 3.40 77.6 

0.90 783 32.2 4.13 1.90 45.3 

1.15 730 31.4 4.30 1.44 32.5 
1.40 1094 50.8 4.64 1.92 40.4 

1.65 1335 72.2 5.40 2.32 42.1 

1.90 [389 86.6 6.23 2.47 38.6 

2.15 1205 83.5 7.01 2.24 31.2 

2.40 1350 83.7 6.19 2.12 33.1 

2.65 1224 60.9 5.00 1.46 28.2 

2.90 1015 54.2 5.35 1.24 21.9 

3.15 836 39.[ 4.67 0.85 16.9 

3.40 582 25.1 4.34 0.52 10.8 

3.65 614 21.5 3.49 0.43 10.9 

3.90 802 40.4 5.00 0.77 13.9 

4.15 880 47.3 5.39 0.87 14.7 

4.40 607 28.3 4.71 0.50 9.2 

4.65 440 14.7 3.37 0.25 6.0 

4.90 511 15.3 3.03 0.25 6.9 

5.15 3588 20.9 0.87 0.33 55.1 

5.40 4059 17.0 0.42 0.26 60.7 

5.65 5454 20.3 0.37 0.30 79.7 

5.90 4058 18.6 0.47 0.27 57.2 

6.15 4864 47.3 1.06 0.66 66.9 

6.40 4167 32.2 0.93 0.44 55.4 

6.65 3561 38.9 1.16 0.52 45.9 

6.90 5433 30.1 0.55 0.39 69.0 

7.[5 4808 27.4 0.57 0.35 59.3 

7.40 6503 43.3 0.67 0.54 78.8 

7.65 6292 39.1 0.62 0.47 74.4 

7.90 4446 51.5 1.23 0.61 50.9 

8.15 3050 11.5 0.38 0.13 33.5 

8.40 2610 11.3 0.44 0.13 27.7 

8.65 3000 18.8 0.63 0.21 31.4 

8.90 5406 35.4 0.67 0.38 56.6 

9.15 8528 51.7 0.62 0.54 88.0 

9.40 12399 75.7 0.61 0.77 125.2 

9.65 13829 67.6 0.49 0.67 136.0 

9.90 15059 87.5 0.58 0.85 144.1 

10.15 [8788 143.3 0.76 1.35 175.4 

10.40 17986 \06.9 0.58 0.98 163.6 
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Table A3. (continued) 

Depth !l crvo J.lo cr'VO Bq 

(m) (kPa) (kPa) (kPa) (kPa) 

0.15 -11.4 2.94 0.0 2.94 -0.01 

0.40 -36.4 7.83 0.0 7.83 -0.02 

0.65 -51.0 12.52 0.0 12.52 -0.05 

0.90 -49.1 17.15 0.0 17.15 -0.06 

1.15 -44.5 21.77 0.0 21.77 -0.06 

1.40 -35.9 26.40 0.0 26.40 -0.03 

1.65 -20.0 31.02 0.0 31.02 -0.02 

1.90 -6.9 35.65 0.6 35.06 -0.01 

2.15 2.1 40.27 2.9 37.33 0.00 

2.40 7.2 44.90 5.4 39.51 0.00 

2.65 18.5 49.52 7.8 41.68 0.01 

2.90 36.5 54.15 10.3 43.86 0.03 

3.15 42.7 58.77 12.7 46.03 0.04 

3.40 47.3 63.40 15.2 48.21 0.06 

3.65 55.0 68.02 17.6 50.38 0.07 

3.90 65.6 72.65 20.1 52.56 0.06 

4.15 69.1 77.27 22.5 54.73 0.06 

4.40 64.3 81.90 25.0 56.91 0.07 

4.65 62.9 86.52 27.4 59.08 0.10 

4.90 65.5 91.14 29.9 61.25 0.08 

5.15 33.5 95.59 32.3 63.25 0.00 

5.40 2.5 99.99 34.8 65.20 -0.01 

5.65 -3.6 104.39 37.2 67.15 -0.01 

5.90 -2.8 108.79 39.7 69.10 -0.01 

6.15 -3.4 113.19 42.1 71.05 -0.01 

6.40 6.1 117.59 44.6 73.00 -0.01 

6.65 -5.8 121.99 47.0 74.95 -0.02 

6.90 -4.8 126.39 49.5 76.90 -O.oI 
7.15 -5.9 130.79 51.9 78.85 -0.01 

7.40 -5.9 135.19 54.4 80.80 -O.oI 
7.65 -6.8 139.59 56.8 82.75 -0.01 

7.90 -5.2 143.99 59.3 84.70 -0.01 

8.15 -5.9 148.39 61.7 86.65 -0.02 

8.40 -1.2 152.79 64.2 88.60 -0.03 

8.65 1.9 157.19 66.6 90.55 -0.02 

8.90 4.3 161.59 69.1 92.50 -0.01 

9.15 7.3 166.33 71.5 94.79 -0.01 

9.40 9.4 171.58 74.0 97.59 -0.01 

9.65 11.4 176.83 76.4 100.39 0.00 

9.90 14.3 182.08 78.9 103.19 0.00 

10.15 16.7 187.33 81.3 105.99 0.00 

10.40 18.9 192.58 83.8 108.79 0.00 
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Table A3. (continued) 

Depth F Ie 4> Dr 

(m) (%) (Degrees) (%) 

0.15 4.85 2.04 39.3 98.2 

0.40 3.61 2.11 37.1 85.2 

0.65 4.38 2.45 33.4 62.9 

0.90 4.20 2.59 31.6 52.3 

1.15 4.43 2.70 30.7 46.8 

1.40 4.75 2.66 32.2 55.7 

1.65 5.54 2.70 32.8 59.1 

1.90 6.40 2.77 32.7 58.4 

2.15 7.17 2.87 31.8 53.5 

2.40 6.41 2.81 32.3 55.9 

2.65 5.19 2.80 31.7 52.3 

2.90 5.64 2.90 30.6 46.2 

3.15 5.03 2.95 29.6 40.0 

3.40 4.84 3.09 27.8 28.9 

3.65 3.93 3.04 27.9 29.9 

3.90 5.54 3.05 29.1 36.9 

4.15 5.90 3.04 29.4 39.0 

4.40 5.40 3.18 27.6 27.8 

4.65 4.18 3.26 25.9 18.0 

4.90 3.65 3.18 26.6 21.8 

5.15 0.60 1.99 35.8 77.2 

5.40 0.43 1.89 36.3 80.3 

5.65 0.38 1.76 37.7 88.3 

5.90 0.47 1.93 36.2 79.4 

6.15 1.00 2.05 37.0 84.2 

6.40 0.79 2.06 36.2 79.4 

6.65 1.13 2.21 35.4 74.5 

6.90 0.57 1.90 37.3 86.3 

7.15 0.59 1.96 36.7 82.4 

7.40 0.68 1.89 38.1 90.7 

7.65 0.64 1.90 37.8 89.4 

7.90 1.20 2.19 36.1 79.1 

8.15 0.40 2.11 34.3 68.0 

8.40 0.46 2.21 33.5 63.2 

8.65 0.66 2.23 34.1 66.9 

8.90 0.68 2.01 36.8 83.5 

9.15 0.62 1.83 39.0 96.2 

9.40 0.62 1.70 40.7 106.5 

9.65 0.50 1.62 41.1 109.2 

9.90 0.59 1.64 41.5 111.3 

10.15 0.77 1.65 42.5 117.2 

10.40 0.60 1.60 42.2 115.6 
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Table A4. Piezocone penetration data for CPTU-4 

Depth qT t;, Rr f,/(f'vo Q 
(m) (kPa) (kPa) (%) 

0.15 1248 52.7 4.24 18.96 452.6 

0.40 2261 96.1 4.26 12.80 298.2 

0.65 2358 99.0 4.26 7.80 183.0 

0.90 3774 157.4 4.16 8.93 214.7 

1.15 3404 191.5 5.64 8.65 153.3 
1.40 2722 160.7 5.91 6.03 101.1 
1.65 1913 127.0 6.66 4.06 60.2 

1.90 1700 114.3 6.73 3.22 46.9 

2.15 2502 110.3 4.63 2.92 65.0 

2.40 1488 75.7 5.19 1.90 36.2 

2.65 1004 48.8 4.90 1.16 22.7 

2.90 849 38.9 4.59 0.88 18.0 

3.15 716 36.6 5.03 0.78 14.1 

3.40 889 64.5 7.33 1.33 17.0 

3.65 831 47.5 5.66 0.94 15.0 

3.90 3195 33.9 1.98 0.64 58.6 

4.15 3509 44.4 1.29 0.81 62.5 

4.40 4991 36.6 0.74 0.64 86.4 

4.65 2560 27.8 1.23 0.47 42.2 

4.90 2333 16.1 0.74 0.26 36.9 

5.15 1226 29.3 2.53 0.47 18.1 

5.40 2300 28.3 1.30 0.44 34.1 

5.65 2403 16.7 0.69 0.25 34.5 

5.90 4614 32.0 0.70 0.47 65.6 

6.15 4625 53.1 1.21 0.75 64.0 

6.40 5026 34.1 0.67 0.47 67.8 

6.65 4842 28.7 0.59 0.39 63.4 

6.90 5776 37.3 0.64 0.49 74.0 

7.15 5582 45.0 0.81 0.57 69.6 

7.40 5081 34.5 0.68 0.43 61.7 

7.65 4252 24.3 0.58 0.30 50.1 

7.90 2417 13.8 0.56 0.16 27.1 

8.15 1293 9.8 0.75 0.11 13.3 

8.40 4665 29.5 0.68 0.33 51.1 

8.65 10921 73.2 0.67 0.81 118.6 

8.90 13955 89.4 0.65 0.96 147.7 

9.15 10826 74.9 0.69 0.78 110.7 

9.40 10490 82.0 0.80 0.83 104.3 
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Table A4. (continued) 

Depth I.l cr", !lo cr' 
'" Bq 

(m) (kPa) (kPa) (kPa) (kPa) 

0.15 45.6 2.94 0.0 2.94 0.04 

0.40 -44.0 7.84 0.0 7.84 -0.02 

0.65 -45.8 12.74 0.0 12.74 -0.02 

0.90 -25.6 17.57 0.0 17.57 -0.01 

1.15 -43.0 22.21 0.0 22.21 -0.01 
1.40 -47.9 26.84 0.0 26.84 -0.02 

1.65 -47.6 31.46 0.0 31.46 -0.03 

1.90 -41.6 36.09 0.6 35.50 -0.03 

2.15 -23.0 40.71 2.9 37.77 -0.01 
2.40 0.1 45.34 5.4 39.95 0.00 
2.65 10.2 49.96 7.8 42.12 0.00 

2.90 23.0 54.59 10.3 44.30 0.Q2 

3.15 47.9 59.21 12.7 46.47 0.05 

3.40 51.6 63.84 15.2 48.65 0.04 

3.65 55.6 68.46 17.6 50.82 0.05 

3.90 41.8 73.03 20.1 52.94 0.01 

4.15 1.0 77.44 22.5 54.90 -0.01 

4.40 -3.3 81.84 25.0 56.85 -0.01 
4.65 -3.4 86.24 27.4 58.80 -0.01 

4.90 2.6 90.64 29.9 60.75 -0.01 

5.15 1.1 95.04 32.3 62.70 -0.03 

5.40 -1.5 99.44 34.8 64.65 -0.02 

5.65 -2.2 103.84 37.2 66.60 -0.02 

5.90 -1.2 108.24 39.7 68.55 -0.01 

6.15 -1.9 112.64 42.1 70.50 -0.01 

6.40 0.4 117.04 44.6 72.45 -0.01 

6.65 -1.4 121.44 47.0 74.40 -0.01 

6.90 -1.7 125.84 49.5 76.35 -0.01 

7.15 -2.8 130.24 51.9 78.30 -0.01 

7.40 -2.6 134.64 54.4 80.25 -0.01 

7.65 -0.6 139.04 56.8 82.20 -0.01 

7.90 1.2 143.44 59.3 84.15 -0.03 

8.15 3.3 147.84 61.7 86.10 -0.05 

8.40 7.4 152.27 64.2 88.08 -0.01 

8.65 9.4 157.32 66.6 90.68 -O.oI 
8.90 12.3 162.57 69.1 93.48 0.00 

9.15 14.8 167.82 71.5 96.28 -0.01 

9.40 17.0 173.07 74.0 99.08 -0.01 
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Table A4. (continued) 

Depth F Ie cI> Dr 

(m) (%) (Degrees) (%) 

0.15 4.23 2.03 38.1 90.9 

0.40 4.27 2.11 38.6 93.9 

0.65 4.22 2.20 37.6 88.1 

0.90 4.19 2.17 39.1 97.0 

1.15 5.66 2.36 38.0 90.7 

1.40 5.96 2.48 36.5 81.6 

1.65 6.75 2.66 34.5 69.2 

1.90 6.87 2.73 33.6 64.1 

2.15 4.48 2.50 35.3 74.2 

2.40 5.24 2.72 32.7 58.5 

2.65 5.12 2.86 30.7 46.5 

2.90 4.89 2.93 29.8 41.0 

3.15 5.57 3.04 28.8 35.4 

3.40 7.82 3.08 29.8 41.0 

3.65 6.23 3.05 29.3 38.4 

3.90 1.09 2.11 35.7 76.4 

4.15 1.29 2.14 36.0 78.6 

4.40 0.75 1.88 37.6 88.2 

4.65 1.12 2.24 34.4 68.6 

4.90 0.72 2.19 33.8 65.4 

5.15 2.59 2.75 30.7 46.5 

5.40 1.29 2.35 33.6 64.1 

5.65 0.72 2.21 33.8 65.0 

5.90 0.71 1.97 36.8 83.2 

6.15 1.18 2.11 36.8 82.9 

6.40 0.69 1.95 37.1 84.9 

6.65 0.61 1.95 36.8 83.4 

6.90 0.66 1.91 37.6 88.1 

7.15 0.83 1.98 37.4 86.8 

7.40 0.70 1.99 36.9 83.7 

7.65 0.59 2.03 36.0 78.3 

7.90 0.61 2.27 33.2 61.8 

8.15 0.85 2.61 30.2 43.5 

8.40 0.65 2.04 36.3 80.0 

8.65 0.68 1.75 40.3 103.9 

8.90 0.65 1.66 41.4 110.5 

9.15 0.70 1.78 40.1 102.8 

9.40 0.79 1.83 39.9 101.5 
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Figure A5. Piezocone penetration data for CPTU-5 



www.manaraa.com

124 

Q F(%) Soil Log I. 

o 50 100 150 200 0 2 4 6 8 10 1.5 2 2.5 3 3.5 4 

o 
i I I""""'I:~~T""""""""""""""'~""""'''''''''''''O 
I I I 

I i 

I t 

i I .u= 
~ , 1 

Fill 

i ! 

I ! ! 1 

2 

\1 
t 1 

! 
I 

)1 I 
, , 

i I 
i t 
, 

I I 

3 3 

4 
1 

i 

j 

E 
'-' 
.c -Q. 

Q 6 

I 
: 

I 

J 
i 

: 
, 
1 

I 
1 1 

! i 

5 

Alluvial Silt 

5 

6 

I 
I i 

, 
I 

7 Interbedded 7 

I Alluvial Silts and 
i Clays 
: 
I 

8 i 8 

1 I 

i 
j 

! 1 ! 
9 

I I 
I 

I i 

i 

i ! I 

1 j I 
I 

i I 

! i 

i I 
I 

i I 
i 

.......... I 
.d. t 

I 

I ! 

I I ! 

10 

11 

12 

13 

Alluvial Clay 

Shale 

10 
I 
I 1 

I 
11 

I I 

I 
I I 

12 
I 

I II I , I 
7)1 l6) Ii (5) (4J i(3\ 

13 

Figure AS. (continued) 



www.manaraa.com

125 

Dr(%) <l> (degrees) Soil Log Extended Ie 

o 50 100 150 20 30 40 50 60 1.5 2 2.5 3 3.5 4 

o ~~~~~~~~~ 0 
i I 
I I 
i I 

I i 
I i 

I I -I 
Fill 

I 

! i 

I i 
! 

! ! 
i , 

2 

\1 I 

)' I 
I 
I 
I 

~ i ! 
, I 

3 

4 

e --.c -Q. 

Q 6 

) 
I I 
I I , 

i , 
i i 

J 
I ! 

I 

i 
I 

! 
~\ I 

, 
, ! , 

5 

AJluvial Silt 

5 

6 

I: 

.~ I 
i : 
! I 

i ! 
7 Interbedded 

AJluvial Silts and 

I' 
I! 

I 
7 

II 

i 
Clays I: 

: , I' 
I 8 

I 
8 

i 

> 
, 
I , 

I: 
I 

i , I' I 
9 , 9 

i 
, 

I Ii 
i 
I I j I 
I , I I' , 

10 I 10 

I i I: 

! 

! 11 

Alluvial Clay I 
I 

11 
I 

I 
i 

'-...... i 
2 , 

12 

Shale 

I 
I 
I i 

12 
I I ! 
I ,I I ! I 

i 
I 

13 
7)1 (6) (5) 'I (4J i(3j 

13 

Figure AS. (continued) 



www.manaraa.com

126 

Table A5. Piezocone penetration data for CPTU-5 

Depth qT 1;, Rr f,lcr'vo Q 
(m) (kPa) (kPa) (%) 

0.15 4455 63.6 1.46 26.99 2055.1 

0.40 4465 47.5 1.17 6.35 565.4 

0.65 4751 14.0 0.32 1.24 401.6 

0.90 4840 63.0 1.61 3.52 281.3 

1.15 3770 103.0 2.84 4.53 164.9 

1.40 2998 97.3 3.30 3.58 109.9 

1.65 6153 71.1 1.76 2.18 185.0 

1.90 9916 145.0 1.55 3.88 266.0 

2.15 3695 150.7 4.10 3.59 87.2 

2.40 5910 118.0 2.26 2.52 123.7 

2.65 2858 105.1 3.89 2.03 54.5 

2.90 1936 93.7 4.88 1.65 33.1 

3.15 2590 82.2 3.17 1.34 41.2 

3.40 2273 80.3 3.53 1.22 33.5 

3.65 2008 85.2 4.25 1.21 27.5 

3.90 2199 106.5 4.84 1.41 28.2 

4.15 2281 92.3 4.06 1.18 28.1 

4.40 2607 114.2 4.38 1.42 31.3 

4.65 2601 120.5 4.63 1.46 30.4 

4.90 2198 111.7 5.10 1.31 24.8 

5.15 2114 127.0 6.01 1.46 23.1 

5.40 2002 112.6 5.61 1.26 21.3 

5.65 1670 75.7 4.54 0.83 l7.1 

5.90 1239 50.8 4.15 0.54 12.1 

6.15 939 43.5 4.70 0.45 8.6 

6.40 1007 40.2 3.97 0.41 9.0 

6.65 1024 22.6 2.35 0.23 9.0 

6.90 666 12.8 1.92 0.13 5.2 

7.15 575 12.8 2.24 0.12 4.2 

7.40 547 12.6 2.32 0.12 3.8 

7.65 589 8.2 1.44 0.08 4.1 

7.90 1053 21.6 2.26 0.19 8.2 

8.15 695 22.8 3.35 0.20 4.8 

8.40 838 15.3 1.94 0.13 5.9 

8.65 704 12.8 1.82 0.11 4.6 

8.90 595 10.5 1.80 0.09 3.6 

9.15 726 14.4 1.98 0.12 4.5 

9.40 774 18.2 2.35 0.15 4.8 

9.65 959 27.4 2.85 0.22 6.2 

9.90 1110 34.1 3.08 0.27 7.2 

10.15 961 27.2 2.83 0.21 5.9 

10.40 916 29.9 3.28 0.23 5.4 

10.65 963 30.3 3.14 0.22 5.7 

10.90 906 21.1 2.34 0.15 5.1 

11.15 934 17.6 1.88 0.13 5.2 

11.40 885 14.4 1.63 0.10 4.7 

11.65 934 12.6 1.36 0.09 5.0 
11.90 2860 55.4 3.08 0.38 18.0 
12.15 6969 109.0 1.80 0.74 45.6 
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Table AS. (continued) 

Depth ~ avo flo a'vo Bq 

(m) (kPa) (kPa) (kPa) (kPa) 

0.15 0.1 2.94 0.0 2.94 0.00 

0.40 0.3 7.84 0.0 7.84 0.00 

0.65 -5.4 12.74 0.0 12.74 0.00 
0.90 -fJ.7 17.64 0.0 17.64 0.00 

1.15 15.6 22.54 0.0 22.54 0.00 

1.40 11.3 27.44 0.0 27.44 0.00 

1.65 13.5 32.34 0.0 32.34 0.00 

1.90 3.0 37.24 0.0 37.24 0.00 

2.15 12.3 42.14 0.0 42.14 0.00 

2.40 16.5 47.04 0.0 47.04 0.00 

2.65 9.9 51.94 0.0 51.94 0.00 

2.90 10.2 56.73 0.0 56.73 0.01 

3.15 4.8 61.36 0.0 61.36 0.00 

3.40 -0.8 65.98 0.0 65.98 0.00 

3.65 -4.7 70.61 0.0 70.61 0.00 

3.90 -7.9 75.23 0.0 75.23 0.00 

4.15 7.9 79.86 1.5 78.39 0.00 

4.40 29.5 84.48 3.9 80.56 0.01 
4.65 37.8 89.11 6.4 82.74 0.01 

4.90 64.8 93.73 8.8 84.91 0.03 
5.15 53.0 98.36 11.3 87.09 0.02 

5.40 49.8 102.98 13.7 89.26 0.02 

5.65 58.6 107.61 16.2 91.44 0.03 

5.90 68.4 1J2.23 18.6 93.61 0.04 

6.15 70.7 116.86 21.1 95.79 0.06 

6.40 74.3 121.48 23.5 97.96 0.06 

6.65 80.9 126.11 26.0 100.14 0.06 

6.90 92.4 130.73 28.4 102.31 0.12 

7.15 109.1 135.36 30.9 104.49 0.18 

7.40 121.2 139.98 33.3 106.66 0.22 

7.65 128.8 144.61 35.8 108.84 0.21 

7.90 142.5 149.23 38.2 111.01 0.12 

8.15 160.1 153.86 40.7 113.19 0.22 

8.40 167.1 158.48 43.1 115.36 0.18 

8.65 178.2 163.11 45.6 117.54 0.25 

8.90 226.0 167.73 48.0 119.71 0.42 

9.15 267.7 172.36 50.5 121.89 0.39 

9.40 288.1 176.98 52.9 124.06 0.39 

9.65 305.9 181.61 55.4 126.24 0.32 

9.90 312.8 186.23 57.8 128.41 0.28 

10.15 323.0 190.86 60.3 130.59 0.34 

10.40 327.0 195.48 62.7 132.76 0.37 

10.65 340.9 200.11 65.2 134.94 0.36 

10.90 352.5 204.73 67.6 137.11 0.41 

11.15 371.9 209.36 70.1 139.29 0.42 

11.40 383.2 213.98 72.5 141.46 0.46 

11.65 389.2 218.61 75.0 143.64 0.44 
11.90 164.9 223.23 77.4 145.81 0.03 
12.15 -20.3 227.86 79.9 147.99 -fJ.01 
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Table A5. (continued) 

Depth F Ie ~ Dr 

(m) (%) (Degrees) (%) 

0.15 1.43 1.41 44.2 127.4 

0.40 1.07 1.44 41.8 113.4 

0.65 0.30 1.13 41.0 108.2 

0.90 1.31 1.69 40.3 104.1 

1.15 2.75 2.08 38.5 93.4 

1.40 3.28 2.25 36.9 84.0 

1.65 1.16 1.75 40.0 102.3 
1.90 1.47 1.74 41.9 113.9 
2.15 4.13 239 36.9 83.8 
2.40 2.01 2.05 38.9 95.7 
2.65 3.75 2.50 35.2 73.5 
2.90 4.98 2.73 33.1 61.1 

3.\5 3.25 2.54 34.3 68.3 

3.40 3.64 2.64 33.5 63.5 
3.65 4.40 2.76 32.8 59.0 

3.90 5.01 2.79 33.0 60.7 
4.15 4.19 2.74 33.\ 61.1 
4.40 4.53 2.72 33.7 64.6 
4.65 4.80 2.75 33.6 64.1 
4.90 531 2.84 32.8 58.9 
5.15 630 2.92 32.5 57.4 
5.40 5.93 2.93 32.2 55.5 
5.65 4.84 2.94 31.3 50.0 
5.90 4.50 3.04 29.8 41.1 

6.\5 5.29 3.20 2804 32.8 

6.40 4.54 3.14 28.7 34.5 

6.65 2.52 2.99 28.7 34.6 

6.90 2040 3.18 26.6 22.0 

7.15 2.92 3.31 25.9 17.5 

7040 3.10 3.36 25.6 15.8 

7.65 1.85 3.22 25.9 17.6 

7.90 239 3.02 28.6 34.0 

8.\5 4.21 335 26.6 21.8 

8040 2.26 3.12 27.4 26.9 

8.65 2.37 3.23 26.5 21.6 

8.90 2.47 3.33 25.7 16.5 

9.\5 2.60 3.25 26.6 22.0 

9.40 3.05 3.27 26.9 23.6 

9.65 3.52 3.21 27.8 29.5 

9.90 3.69 3,\7 28.5 3304 
10.\5 3.53 3.23 27.8 29.0 

10.40 4.\5 330 27.5 27.4 

10.65 3.97 3.27 27.7 28.6 

10.90 3.01 3.24 27.4 26.6 

11.15 2.43 3.19 27.5 27.3 

11040 2.14 3.20 27.2 25.5 

11.65 1.77 3.14 27.4 26.9 
11.90 2.10 2.70 32.7 58.7 
12.15 1.62 231 36.9 84.0 
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APPENDIX B: 

SETTLEMENT ESTIMATES USING CPTU DATA 
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Sanglerat (1972) proposed: 

where: 

S = total settlement, including short term and long term settlement 

i1cr = expected change in stress at mid-depth of the soil layer 

a. = soil compressibility coefficient. 
For low to medium plasticity clay (eL): qc < 7 bar, 3 < a. < 8; 
7 < qc < 20 bar, 2 < a. < 5 

qc = average tip resistance for each soil layer 

Table Bl. Embankment parameters 

H, Fill H, Fill Loada L, Embankment LIH 
Height (ft) Height (m) (pst) width (m) 

Stage 1 15 4.6 1800 13 2.8 
Total (1 & 2) 30 9.1 3600 13 1.4 
a y = 120 pcf assumed 

Table B2. i1cr calculations 

Z, Depth to ZlH ZIH Influence Influence ~cr ~cr 

Mid of layer Stage 1 Stage 2 Factorb Factorb Stage 1 Total (I & 2) 
(m) Stage 1 Stage 2 (kpa) (kpa) 
0.95 0.21 0.10 0.95 0.90 81.88 155.13 
1.25 0.27 0.14 0.95 0.89 81.88 153.41 
1.55 0.34 0.17 0.94 0.89 81.01 153.41 
1.85 0.40 0.20 0.93 0.87 80.15 149.96 
2.25 0.49 0.25 0.93 0.87 80.15 149.96 
2.75 0.60 0.30 0.92 0.86 79.29 148.24 
3.25 0.71 0.36 0.92 0.85 79.29 146.51 
3.75 0.82 0.41 0.91 0.84 78.43 144.79 
4.25 0.93 0.46 0.91 0.83 78.43 143.07 
4.75 1.04 0.52 0.90 0.82 77.57 141.34 
5.25 1.15 0.57 0.90 0.81 77.57 139.62 

5.75 1.26 0.63 0.89 0.80 76.70 137.90 
b Influence factors from Winterkorn and Fang (1975), pg 167 
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Table B3. Settlement calculations 

Depth to Depth to Ho qc qc a 
Top of Layer Mid oflayer Layer . Layer Ave Layer Ave 

(m) (m) (m) (kPa) (bar) 
0.8 0.95 0.3 291 2.91 5.8 
1.1 1.25 0.3 360 3.60 5.8 
1.4 1.55 0.3 634 6.34 5.8 
1.7 1.85 0.3 804 8.04 5.8 
2.0 2.25 0.5 1173 11.73 5.8 
2.5 2.75 0.5 1192 11.92 5.8 
3.0 3.25 0.5 750 7.50 5.8 
3.5 3.75 0.5 541 5.41 5.8 
4.0 4.25 0.5 637 6.37 5.8 
4.5 4.75 0.5 561 5.61 5.8 
5.0 5.25 0.5 424 4.24 5.8 
5.5 5.75 0.5 644 6.44 5.8 

Table B4. Results of settlement estimates using CPTU data 

Stage 1 
Stage 2 
Total 

Settlement 
(m) (in) 

0.120 4.7 
0.101 4.0 
0.221 8.7 
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APPENDIX C: 

PRESSUREMETER (PMT) TEST DATA 
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Figure C2. PMT-2 (Prior to rammed aggregate pier installation) (top) pressuremeter 
curve, (bottom) creep curve 
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Table C1. Results of pressuremeter tests 1-4 

Depth Test No. Time of test Eo PL 
(m) (kPa) (kPa) 
0.5 PMT-4 73 days after piers 5387 620 

1.4 PMT-2 Prior to piers 4053 425 

1.4 PMT-3 7 days after piers 4288 440 

1.4 PMT-4 73 days after piers 3478 475 

2.6 PMT-4 73 days after piers 2594 550 

2.7 PMT-l Prior to piers 6508 620 

2.9 PMT-2 Prior to piers 3194 475 

2.9 PMT-3 7 days after piers 4789 480 

4.4 PMT-2 Prior to piers 1884 325 

4.4 PMT-3 7 days after piers 3640 300 

5.9 PMT-2 Prior to piers 6044 750 

5.9 PMT-3 7 days after piers 4667 530 

6.1 PMT-l Prior to piers 7790 700 
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APPENDIXD: 

BOREHOLE SHEAR (BHST) TEST DATA 
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Table Dl. Results ofBHST-l 

Depth ~ c R2 
(m) (degrees) (kPa) 

1.2 13 38 0.994 

1.8 19 36 0.999 

2.7 25 22 0.999 

3.4 24 16 0.997 

4.6 30 15 0.992 

5.2 11 16 0.997 
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APPENDIXE: 

SQUARE-ROOT-OF-TIME COMPRESSION CURVES 
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APPENDIX F: 

SETTLEMENT ESTIMATES USING CONFINED 

COMPRESSION (OEDOMETER) DATA 
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Table Fl. Stress calculations for the compressible layer 

Initial stresses: 

Depth Description ~crv, depth X ya cry 

(m) (ft) (pst) (pst) 
0.0 0.0 Ground surface 0.0 

1259.8 
3.2 10.5 Mid-depth clay layer 1259.8 280.7 

1102.3 
6.0 19.7 Clay/sand barrier 2362.2 853.9 
.y = 120 pcfassumed 
b phreatic surface at 6 ft depth 

Increment of stress at mid-depth ofthe clay layer: 

Stage 1 (15 ft fill height) 

Depth 
(m) (ft) 

LIH ZIH Influence ~crv, loadb x I.F. 
Factor, LF.a (pst) 

3.2 10.5 2.8 0.66 0.92 1656 
a Influence factors from Winterkorn and Fang (1975, p. 167) 
by = 120 pcfassumed 

Stage 2 (30 ft fill height) 

Depth 
(m) (ft) 
3.2 10.5 

LIH 

1.4 

ZIH Influence ~crv, loadb x I.F. 
Factor, LF.a (pst) 

0.34 0.85 3060 
• Influence factors from Winterkorn and Fang (1975, p. 167) 
by = 120 pcf assumed 

Summary of effective stresses at mid-depth of the clay layer: 

crvo = 979.1 psf = 46.9 kPa 

crvl = 2635.1 psf = 126.2 kPa 

crv2 = 4039.1 psf = 193.4 kPa 

cr v, effective 

(pSt) 

979.1 

1508.2 
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Table F2. Primary consolidation settlement calculations 

I:H p= __ o L\e 
1 + eo 

where: 

p = primary consolidation settlement 

Ho = depth ofthe consolidating soil layer 

eo = initial in-situ void ratio 

L\e = change in void ratio as a result of changes in effective stress 

Stage 1 settlement: 

p= 5.6m (0.825-0.745)=0.245m=9.66in 
1+0.825 

Stage 2 settlement: 

p= 5.6m (0.745-0.701)=0.141m=5.56in 
1+0.745 

Total estimated settlement for unreinforced soil = 0.387 m = 15.22 in 

Table F3. Results of settlement estimates using confined compression data 

Stage 1 
Stage 2 
Total 

Settlement 
(m) (in) 

0.245 9.7 
0.141 5.6 
0.386 15.2 
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